Multiscale Finite ElementMethods for Flows on Rough Surfaces  

在线阅读下载全文

作  者:Yalchin Efendiev Juan Galvis M.Sebastian Pauletti 

机构地区:[1]Department of Mathematics,TAMU,College Station,TX 77843-3368,USA [2]Departamento de Matematicas,Universidad Nacional de Colombia,Bogota,Colombia

出  处:《Communications in Computational Physics》2013年第9期979-1000,共22页计算物理通讯(英文)

基  金:supported by the US Army 62151-MA,DOE and NSF(DMS 0934837,DMS 0724704,and DMS 0811180);supported by Award No.KUS-C1-016-04,made by King Abdullah University of Science and Technology(KAUST).

摘  要:In this paper,we present the Multiscale Finite Element Method(MsFEM)for problems on rough heterogeneous surfaces.We consider the diffusion equation on oscillatory surfaces.Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid.This problem arises in many applications where processes occur on surfaces or thin layers.We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface.The main ingredients of MsFEM are(1)the construction of multiscale basis functions and(2)a global coupling of these basis functions.For the construction of multiscale basis functions,our approach uses the transformation of the reference surface to a deformed surface.On the deformed surface,multiscale basis functions are defined where reduced(1D)problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions.Furthermore,these basis functions are transformed back to the reference configuration.We discuss the use of appropriate transformation operators that improve the accuracy of the method.The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition.In this paper,we consider such transformations based on harmonic coordinates(following H.Owhadi and L.Zhang[Comm.Pure and Applied Math.,LX(2007),pp.675-723])and discuss gridding issues in the reference configuration.Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction.The first deformation employs local information and the second deformation employs a global information.Our numerical results showthat one can improve the accuracy of the simulations when a global information is used.

关 键 词:Multiscale finite elements on surfaces Laplace Beltrami resonance error harmonic maps 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象