检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Philip Barton Evgeniy Romenski
机构地区:[1]Graduate Aerospace Laboratories,California Institute of Technology,California 91125,USA [2]Sobolev Institute of Mathematics,Russian Academy of Sciences,Novosibirsk 630090,Russia
出 处:《Communications in Computational Physics》2012年第5期1525-1546,共22页计算物理通讯(英文)
摘 要:In this paper we show that entropy can be used within a functional forthe stress relaxation time of solid materials to parametrise finite viscoplastic strainhardeningdeformations. Through doing so the classical empirical recovery of a suitableirreversible scalar measure of work-hardening from the three-dimensional stateparameters is avoided. The success of the proposed approach centres on determinationof a rate-independent relation between plastic strain and entropy, which is foundto be suitably simplistic such to not add any significant complexity to the final model.The result is sufficiently general to be used in combination with existing constitutivemodels for inelastic deformations parametrised by one-dimensional plastic strain providedthe constitutive models are thermodynamically consistent. Here a model for thetangential stress relaxation time based upon established dislocation mechanics theoryis calibrated for OFHC copper and subsequently integrated within a two-dimensionalmoving-mesh scheme. We address some of the numerical challenges that are faced inorder to ensure successful implementation of the proposedmodel within a hydrocode.The approach is demonstrated through simulations of flyer-plate and cylinder impacts.
关 键 词:ENTROPY VISCOPLASTICITY solid mechanics relaxation time Maxwell solid EULERIAN
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70