检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Derek Gaston Luanjing Guo Glen Hansen Hai Huang Richard Johnson Dana Knoll Chris Newman Hyeong Kae Park Robert Podgorney Michael Tonks Richard Williamson
机构地区:[1]Nuclear Science and Technology,Idaho National Laboratory,Idaho Falls,ID 83415,USA [2]Energy and Environment Science and Technology,Idaho National Laboratory,Idaho Falls,ID 83415,USA [3]Multiphysics Simulation Technologies Dept.(1444),Sandia National Laboratories,Albuquerque,NM 87185,USA [4]Fluid Dynamics and Solid Mechanics Group(T-3),Los Alamos National Laboratory,Los Alamos,NM 87545,USA
出 处:《Communications in Computational Physics》2012年第8期807-833,共27页计算物理通讯(英文)
摘 要:There is a growing trend within energy and environmental simulation to consider tightly coupled solutions to multiphysics problems.This can be seen in nuclear reactor analysis where analysts are interested in coupled flow,heat transfer and neutronics,and in nuclear fuel performance simulation where analysts are interested in thermomechanics with contact coupled to species transport and chemistry.In energy and environmental applications,energy extraction involves geomechanics,flow through porous media and fractured formations,adding heat transport for enhanced oil recovery and geothermal applications,and adding reactive transport in the case of applications modeling the underground flow of contaminants.These more ambitious simulations usually motivate some level of parallel computing.Many of the physics coupling efforts to date utilize simple code coupling or first-order operator splitting,often referred to as loose coupling.While these approaches can produce answers,they usually leave questions of accuracy and stability unanswered.Additionally,the different physics often reside on distinct meshes and data are coupled via simple interpolation,again leaving open questions of stability and accuracy.∗Corresponding author.Email addresses:Derek.Gaston@inl.gov(D.Gaston),This paper is the first part of a two part sequence on multiphysics algorithms and software.Part I examines the importance of accurate time and space integration and that the degree of coupling used for the solution should match the requirements of the simulation.It then discusses the preconditioned Jacobian-free Newton Krylov solution algorithm that is used for both multiphysics and multiscale solutions.Part II[1]presents the software framework;the Multiphysics Object Oriented Simulation Environment(MOOSE)and discusses applications based on it.
关 键 词:Multiphysics simulation Jacobian-free Newton Krylov finite element applications physics-based preconditioning
分 类 号:O57[理学—粒子物理与原子核物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3