The Stability and Convergence of Fully Discrete Galerkin-Galerkin FEMs for Porous Medium Flows  被引量:1

在线阅读下载全文

作  者:Buyang Li Jilu Wang Weiwei Sun 

机构地区:[1]Department of Mathematics,Nanjing University,Nanjing,P.R.China [2]Department of Mathematics,City University of Hong Kong,Kowloon,Hong Kong

出  处:《Communications in Computational Physics》2014年第4期1141-1158,共18页计算物理通讯(英文)

基  金:supported in part by a grant from National Science Foundation(Project No.11301262);a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.CityU 102613);The work of J.Wang and W.Sun was supported in part by a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.CityU 102613).

摘  要:The paper is concerned with the unconditional stability and error estimates of fully discrete Galerkin-Galerkin FEMs for the equations of incompressible miscible flows in porous media.We prove that the optimal L 2 error estimates hold without any time-step(convergence)conditions,while all previous works require certain time-step restrictions.Theoretical analysis is based on a splitting of the error into two parts:the error from the time discretization of the PDEs and the error from the finite element discretization of the corresponding time-discrete PDEs,which was proposed in our previous work[26,27].Numerical results for both two and three-dimensional flow models are presented to confirm our theoretical analysis.

关 键 词:Unconditional stability optimal error estimate Galerkin FEMs incompressible miscible flows 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象