A Runge Kutta Discontinuous Galerkin Method for Lagrangian Compressible Euler Equations in Two-Dimensions  被引量:2

在线阅读下载全文

作  者:Zhenzhen Li Xijun Yu Jiang Zhu Zupeng Jia 

机构地区:[1]School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,P.R.China [2]Graduate School,China Academy of Engineering Physics,Beijing 100088,P.R.China [3]Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,P.R.China [4]National Laboratory for Scientific Computing,LNCC/MCTI,Avenida Getúlio Vargas 333,25651-075 Petrópolis,RJ,Brazil

出  处:《Communications in Computational Physics》2014年第4期1184-1206,共23页计算物理通讯(英文)

基  金:supported by the National Natural Science Foundation of China(Grant No.11171038);the Science Foundation of China Academy of Engineering Physics,China(Grant No.2013A0202011);the National Council for Scientific and Technological Development of Brazil(CNPq).

摘  要:This paper presents a new Lagrangian type scheme for solving the Euler equations of compressible gas dynamics.In this new scheme the system of equations is discretized by Runge-Kutta Discontinuous Galerkin(RKDG)method,and the mesh moves with the fluid flow.The scheme is conservative for the mass,momentum and total energy and maintains second-order accuracy.The scheme avoids solving the geometrical part and has free parameters.Results of some numerical tests are presented to demonstrate the accuracy and the non-oscillatory property of the scheme.

关 键 词:Lagrangian type scheme compressible Euler equations RKDG method conservative scheme 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象