检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wenjun Cai Yajuan Sun Yushun Wang
机构地区:[1]Key Laboratory of Computational Geodynamics,University of Chinese Academy of Sciences,Beijing 100049,China [2]LSEC,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China [3]Jiangsu Provincial Key Laboratory for NSLSCS,School of Mathematical Sciences,Nanjing Normal University Nanjing 210023,China
出 处:《Communications in Computational Physics》2016年第1期24-52,共29页计算物理通讯(英文)
基 金:This research was supported by the National Natural Science Foundation of China 11271357,11271195 and 41504078;by the CSC,the Foundation for Innovative Research Groups of the NNSFC 11321061 and the ITER-China Program 2014GB124005。
摘 要:In this paper,we study the Camassa-Holm equation and the Degasperis-Procesi equation.The two equations are in the family of integrable peakon equations,and both have very rich geometric properties.Based on these geometric structures,we construct the geometric numerical integrators for simulating their soliton solutions.The Camassa-Holm equation and the Degasperis-Procesi equation have many common properties,however they also have the significant difference,for example there exist the shock wave solutions for the Degasperis-Procesi equation.By using the symplectic Fourier pseudo-spectral integrator,we simulate the peakon solutions of the two equations.To illustrate the smooth solitons and shock wave solutions of the DP equation,we use the splitting technique and combine the composition methods.In the numerical experiments,comparisons of these two kinds of methods are presented in terms of accuracy,computational cost and invariants preservation.
关 键 词:Symplectic integrator splitting method WENO scheme multisymplectic integrator PEAKON shockpeakon
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49