LOD-MS for Gross-Pitaevskii Equation in Bose-Einstein Condensates  被引量:2

在线阅读下载全文

作  者:Linghua Kong Jialin Hong Jingjing Zhang 

机构地区:[1]School of Mathematics and Information Science,Jiangxi Normal University,Nanchang,Jiangxi 330022,P.R.China [2]State Key Laboratory of Scientific and Engineering Computing,Institute of Computational Mathematics and Scientific/Engineering Computing,Academy of Mathematics and System Science,Chinese Academy of Sciences,P.O.Box 2719,Beijing 100190,P.R.China [3]School of Mathematics and Information Science,Henan Polytechnic University,Jiaozuo,Henan 454000,P.R.China

出  处:《Communications in Computational Physics》2013年第6期219-241,共23页计算物理通讯(英文)

基  金:supported by the National Natural Science Foundation of China(Nos.10901074,11271171);the Provincial Natural Science Foundation of Jiangxi(No.20114BAB201011);the Foundation of Department of Education Jiangxi Province(No.GJJ12174);the State Key Laboratory of Scientific and Engineering Computing,CAS;supported by the Director Innovation Foundation of ICMSEC and AMSS;the Foundation of CAS;the NNSFC(No.91130003,11021101);the Special Funds for Major State Basic Research Projects of China 2005CB321701;supported by the National Natural Science Foundation of China(No.11126118)。

摘  要:The local one-dimensional multisymplectic scheme(LOD-MS)is developed for the three-dimensional(3D)Gross-Pitaevskii(GP)equation in Bose-Einstein condensates.The idea is originated from the advantages of multisymplectic integrators and from the cheap computational cost of the local one-dimensional(LOD)method.The 3D GP equation is split into three linear LOD Schrodinger equations and an exactly solvable nonlinear Hamiltonian ODE.The three linear LOD Schrodinger equations are multisymplectic which can be approximated by multisymplectic integrator(MI).The conservative properties of the proposed scheme are investigated.It is masspreserving.Surprisingly,the scheme preserves the discrete local energy conservation laws and global energy conservation law if the wave function is variable separable.This is impossible for conventional MIs in nonlinear Hamiltonian context.The numerical results show that the LOD-MS can simulate the original problems very well.They are consistent with the numerical analysis.

关 键 词:LOD-MS Gross-Pitaevskii equation local one-dimensional method midpoint method conservation laws 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象