A Fast Semi-Implicit Level Set Method for Curvature Dependent Flows with an Application to Limit Cycles Extraction in Dynamical Systems  

在线阅读下载全文

作  者:Guoqiao You Shingyu Leung 

机构地区:[1]The School of Science,Nanjing Audit University,Nanjing,Jiangsu Province,China [2]Department of Mathematics,The Hong Kong University of Science and Technology,Clear Water Bay,Hong Kong

出  处:《Communications in Computational Physics》2015年第6期203-229,共27页计算物理通讯(英文)

基  金:The work of Leung was supported in part by the RGC under Grant 605612。

摘  要:We propose a new semi-implicit level set approach to a class of curvature dependent flows.The method generalizes a recent algorithm proposed for the motion by mean curvature where the interface is updated by solving the Rudin-Osher-Fatemi(ROF)model for image regularization.Our proposal is general enough so that one can easily extend and apply the method to other curvature dependent motions.Since the derivation is based on a semi-implicit time discretization,this suggests that the numerical scheme is stable even using a time-step significantly larger than that of the corresponding explicit method.As an interesting application of the numerical approach,we propose a new variational approach for extracting limit cycles in dynamical systems.The resulting algorithm can automatically detect multiple limit cycles staying inside the initial guess with no condition imposed on the number nor the location of the limit cycles.Further,we also propose in this work an Eulerian approach based on the level set method to test if the limit cycles are stable or unstable.

关 键 词:Numerical methods for PDEs level set method dynamical systems flow visualization 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象