检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石劲 杜澳宇 王西兵 卢骏 兰建强 郑先伟 SHI Jin;DU Aoyu;WANG Xibin;LU Jun;LAN Jianqiang;ZHENG Xianwei(WISCO Resources Group Chengchao Mining Co.,Ltd.;School of Resource and Environmental Engi-neering,Wuhan University of Science and Technology)
机构地区:[1]武钢资源集团程潮矿业有限公司 [2]武汉科技大学资源与环境工程学院
出 处:《现代矿业》2022年第8期119-121,124,共4页Modern Mining
摘 要:为快速、准确地确定胶结充填体强度,构建了基于PSO-BP的胶结充填体强度预测模型,并以养护7 d和28 d的胶结充填体强度试验数据进行了验证。结果表明:结合粒子群算法优化BP神经网络初始权值,从而大大提高了预测模型的准确性和可靠性,基于粒子群算法优化下的神经网络相对误差为0.77%,比BP神经网络预测的平均相对误差降低了3.42%,表现出良好的预测精度。In order to quickly and accurately determine the strength of cemented backfill,a strength prediction model of cemented backfill based on PSO-BP was constructed and verified with the strength test data of cemented backfill at 7 d and 28 d of curing.The results show that the initial weights of BP neural network are optimized by combining particle swarm optimization algorithm,which greatly improves the accuracy and reliability of the prediction model.The relative error of neural network optimized by particle swarm optimization algorithm is 0.77%,which is 3.42%lower than the average relative error of BP neural network prediction,showing good prediction accuracy.
分 类 号:TD803[矿业工程—矿山开采] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3