检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chaolong Jiang Jin Cui Yushun Wang
机构地区:[1]Jiangsu Provincial Key Laboratory for NSLSCS,School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China [2]Department of Basic Sciences,Nanjing College of Information and Technology,Nanjing 210023,China
出 处:《Communications in Computational Physics》2019年第1期84-106,共23页计算物理通讯(英文)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.11771213,41504078);the National Key Research and Development Project of China(Grant No.2016YFC0600310);supported by National Key R&D Program of the Ministry of Science and Technology of China with the Project"Integration Platform Construction for Joint Inversion and Interpretation of Integrated Geophysics"(Grant No.2018YFC0603500);the Major Projects of Natural Sciences of University in Jiangsu Province of China(Grant No.15KJA110002);the Priority Academic Program Development of Jiangsu Higher Education Institutions。
摘 要:In this paper,a conformal energy-conserved scheme is proposed for solving the Maxwell’s equations with the perfectly matched layer.The equations are split as a Hamiltonian system and a dissipative system,respectively.The Hamiltonian system is solved by an energy-conserved method and the dissipative system is integrated exactly.With the aid of the Strang splitting,a fully-discretized scheme is obtained.The resulting scheme can preserve the five discrete conformal energy conservation laws and the discrete conformal symplectic conservation law.Based on the energy method,an optimal error estimate of the scheme is established in discrete L2-norm.Some numerical experiments are addressed to verify our theoretical analysis.
关 键 词:Maxwell’s equations Fourier pseudo-spectral method error estimate conformal con-servation law PML
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15