Capturing Near-Equilibrium Solutions: A Comparison between High-Order Discontinuous Galerkin Methods and Well-Balanced Schemes  

在线阅读下载全文

作  者:Maria Han Veiga David A.Velasco-Romero Remi Abgrall Romain Teyssier 

机构地区:[1]Institute of Computational Science,University of Zurich,Switzerland [2]Institute of Mathematics,University of Zurich,Switzerland [3]Universidad Autonoma del Estado de Morelos,Mexico [4]Instituto de Ciencias Fisicas,Universidad Nacional Aut́onoma de Ḿexico,Mexico

出  处:《Communications in Computational Physics》2019年第6期1-34,共34页计算物理通讯(英文)

摘  要:Equilibrium or stationary solutions usually proceed through the exact balance between hyperbolic transport terms and source terms. Such equilibrium solutions are affected by truncation errors that prevent any classical numerical scheme from capturing the evolution of small amplitude waves of physical significance. In order to overcome this problem, we compare two commonly adopted strategies: going to very high order and reduce drastically the truncation errors on the equilibrium solution, or design a specific scheme that preserves by construction the equilibrium exactly, the so-called well-balanced approach. We present a modern numerical implementation of these two strategies and compare them in details, using hydrostatic but also dynamical equilibrium solutions of several simple test cases. Finally, we apply our methodology to the simulation of a protoplanetary disc in centrifugal equilibrium around its star and model its interaction with an embedded planet, illustrating in a realistic application the strength of both methods.

关 键 词:Numerical methods BENCHMARK well-balanced methods discontinuous Galerkin methods 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象