A Novel Iterative Penalty Method to Enforce Boundary Conditions in FiniteVolume POD-Galerkin Reduced Order Models for Fluid Dynamics Problems  

在线阅读下载全文

作  者:S.Kelbij Star Giovanni Stabile Francesco Belloni Gianluigi Rozza Joris Degroote 

机构地区:[1]SCK CEN,Institute for Advanced Nuclear Systems,Boeretang 200,2400Mol,Belgium [2]Ghent University,Department of Electromechanical,Systems and Metal Engineering,Sint-Pietersnieuwstraat 41,B-9000 Ghent,Belgium [3]SISSA,International School for Advanced Studies,Mathematics Area,mathLab,via Bonomea 265,34136 Trieste,Italy

出  处:《Communications in Computational Physics》2021年第6期34-66,共33页计算物理通讯(英文)

基  金:supported by the ENEN+project that has received funding from the Euratom research and training Work Programme 2016-2017-1#755576;support provided by the European Research Council Executive Agency by the Consolidator Grant project AROMA-CFD“Advanced ReducedOrder Methodswith Applications in Computational Fluid Dynamics”-GA 681447,H2020-ERC CoG 2015 AROMA-CFD and INdAM-GNCS projects.

摘  要:A Finite-Volume based POD-Galerkin reduced ordermodel is developed for fluid dynamics problems where the(time-dependent)boundary conditions are controlled using two different boundary control strategies:the lifting function method,whose aim is to obtain homogeneous basis functions for the reduced basis space and the penalty method where the boundary conditions are enforced in the reduced order model using a penalty factor.The penalty method is improved by using an iterative solver for the determination of the penalty factor rather than tuning the factor with a sensitivity analysis or numerical experimentation.The boundary control methods are compared and tested for two cases:the classical lid driven cavity benchmark problem and a Y-junction flow case with two inlet channels and one outlet channel.The results show that the boundaries of the reduced order model can be controlled with the boundary control methods and the same order of accuracy is achieved for the velocity and pressure fields.Finally,the reduced order models are 270-308 times faster than the full ordermodels for the lid driven cavity test case and 13-24 times for the Y-junction test case.

关 键 词:Proper Orthogonal Decomposition Navier-Stokes equations Galerkin projection penalty method lifting function method iterative method 

分 类 号:TB3[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象