检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄建华 张迪 Huang Jianhua;Zhang Di(School of Economics and Management,Fuzhou University,Fuzhou 350108,China)
出 处:《统计与决策》2022年第16期26-29,共4页Statistics & Decision
基 金:国家社会科学基金一般项目(20BGL003)。
摘 要:在面对具有突变性、不稳定性以及非线性等特征的区域物流需求预测问题时,传统的时间序列、BPNN、GM-BPNN等预测方法在拟合物流需求曲线上存在缺陷,文章提出了改进GM-BPNN组合预测方法,利用ARIMA和遗传算法(GA)分别改进GM(1,1)和BPNN,根据有效度确定加权系数并构建线性组合模型,并以浙江、广东、江苏进行实例验证。结果表明,相比传统时间序列、BPNN、多元回归、GM-BPNN等预测方法,改进的GM-BPNN组合预测方法提高了物流需求预测的精确度。In the face of regional logistics demand forecasting with the characteristics of mutability, instability and nonlinearity, traditional time series, BPNN, GM-BPNN and other forecasting methods have defects in fitting the logistics demand curve.This paper proposes an improved GM-BPNN combined forecasting method, uses ARIMA and genetic algorithm(GA) to improve GM(1,1) and BPNN respectively, and determines the weighting coefficient according to the validity, with the linear combination model constructed. Finally, the model is verified by examples of Zhejiang Province, Guangdong Province and Jiangsu Province.The results show that compared with traditional time series, BPNN, multiple regression, GM-BPNN and other forecasting methods,the improved GM-BPNN combined forecasting method improves the accuracy of logistics demand forecasting.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171