A Posteriori Error Estimate and Adaptive Mesh Refinement Algorithm for Atomistic/Continuum Coupling with Finite Range Interactions in Two Dimensions  

在线阅读下载全文

作  者:Mingjie Liao Ping Lin Lei Zhang 

机构地区:[1]School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,P.R.China [2]Department of Mathematics,University of Dundee,Dundee,DD14HN,Scotland,United Kingdom [3]School of Mathematical Sciences,Institute of Natural Sciences and MOE-LSC,Shanghai Jiao Tong University,Shanghai 200240,P.R.China

出  处:《Communications in Computational Physics》2020年第1期198-226,共29页计算物理通讯(英文)

基  金:supported by National Natural Science Foundation of China grant 11861131004,11771040,91430106;supported by Natural Science Foundation of China grant 11871339,11861131004,11571314,11471214 and the One Thousand Plan of China for young scientists.

摘  要:In this paper,we develop the residual based a posteriori error estimates and the corresponding adaptive mesh refinement algorithm for atomistic/continuum(a/c)coupling with finite range interactions in two dimensions.We have systematically derived a new explicitly computable stress tensor formula for finite range in-teractions.In particular,we use the geometric reconstruction based consistent atomistic/continuum(GRAC)coupling scheme,which is quasi-optimal if the continuum model is discretized by P1 finite elements.The numerical results of the adaptive mesh refinement algorithm is consistent with the quasi-optimal a priori error estimates.

关 键 词:Atomistic models coarse graining atomistic-to-continuum coupling quasicontin-uum method a posteriori error estimate 

分 类 号:TN9[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象