基于概率语言组合赋权与MULTIMOORA的多准则决策方法  被引量:1

Multi-criteria decision making method based on probabilistic linguistic combination weighting and MULTIMOORA

在线阅读下载全文

作  者:曾凡龙 倪静[2] 阮俊华 王耀燕[1] ZENG Fanlong;NI Jing;YUEN Choon Wah;WANG Yaoyan(Yiwu Industrial&Commercial College,Yiwu 322000,China;Business School,University of Shanghai for Science and Technology,Shanghai 200093,China;Faculty of Engineering,University Malaya,Kuala Lumpur 50603,Malaysia)

机构地区:[1]义乌工商职业技术学院,浙江义乌322000 [2]上海理工大学管理学院,上海200093 [3]马来亚大学工程学院,吉隆坡50603

出  处:《延边大学学报(自然科学版)》2022年第2期123-131,共9页Journal of Yanbian University(Natural Science Edition)

基  金:教育部人文社会科学基金(19YJAZH064)。

摘  要:针对传统的全乘比例多目标优化法(MULTIMOORA)存在的难以表征评价信息的模糊性和不确定性以及评价准则的权重需要从外部获取等问题,提出了一种改进的全乘比例多目标优化法,即基于概率语言组合赋权与MULTIMOORA的多准则决策方法.该方法采用概率语言(PLTS)处理决策者的评价信息,并引入改进的G1和CRITIC法构建组合优化赋权模型以计算评价准则的组合权重.实例对比实验结果表明,改进后的MULTIMOORA决策方法不仅赋权合理,而且具有更高的决策效率和鲁棒性,因此该方法对多准则决策问题具有良好的实际应用价值.Aiming at the problems that the traditional method of Multiplicative and Multi-Objective Ratio Analysis(MULTIMOORA)is difficult to characterize the fuzziness and uncertainty of evaluation information,and the weight of evaluation criteria needs to be obtained from the outside,an improved method of MULTIMOORA based on Probability Language Set(PLTS)and combined weighting model is proposed.This method uses PLTS to process the evaluation information of decision makers,constructs the combination optimization weighting model by introducing the improved G1 and CRITIC method,and calculates the combination weight of the evaluation criteria.Comparative experiments with examples show that the improved MULTIMOORA decision-making method has reasonable weight,higher decision-making efficiency and stronger robustness.Therefore,this method has practical application value for multi criteria decision making problems.

关 键 词:概率语言 多准则决策 MULTIMOORA 组合优化赋权 

分 类 号:C934[经济管理—管理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象