基于颜色差异特征与边缘复杂度的输电铁塔螺栓螺帽目标检测算法  被引量:1

在线阅读下载全文

作  者:邬才斌 范荣全 刘友波[3] 谢伟[2] 李海龙 胡勇 刘俊勇[3] 

机构地区:[1]国网南充供电公司,四川南充637003 [2]国网四川省电力公司建设部,四川成都610041 [3]四川大学电气工程学院,四川成都610065

出  处:《物联网技术》2022年第9期39-45,共7页Internet of things technologies

基  金:国家自然科学基金资助项目(51977133);国网四川省电力公司(52191918003L,131933135027)。

摘  要:螺栓作为输电铁塔上的重要部件,其安装状态正确与否对于铁塔的安全质量至关重要,但目前针对刚搭建完成仍未投入使用的铁塔螺栓安装状态的计算机自动检测方法的研究相对空白,工程实践中仍采用人工检测的方式。因此,针对此类铁塔提出了一种新的螺栓安装状态自动检测算法,该算法将深度学习与数字图像处理方法相结合,在Faster-RCNN网络目标定位的基础上,提出了一种基于颜色差异特征与边缘复杂度的螺栓及空洞目标检测算法,并据此实现对螺栓安装状态的检测。该算法提出了一种基于HSV颜色空间的颜色差异特征算子,可以量化反映图片的整体颜色变化。同时,该算法还提出了包含边缘连通域个数、边缘连通域质心分散度及边缘连通域质心区域分布比的边缘复杂度特征集,可量化表征图片中目标的边缘复杂度。通过对在国家电网施工现场铁塔底部实地拍摄的271张图像(包含2304个目标)进行验证,表明所提出算法的准确率可达86.24%;与单一的深度学习目标检测方法相比,有效提高了目标识别准确率,有望为铁塔上存在安全隐患的未安装部件的及时识别提供一种新的解决方案。

关 键 词:螺栓安装状态 Faster-RCNN网络 自动检测 颜色差异特征 边缘复杂度 图像处理 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象