基于二次矩阵补全的低压配电网相序识别算法  被引量:9

Quadratic matrix completion based phase sequence identification algorithm for low-voltage distribution network

在线阅读下载全文

作  者:洪文慧 李钦豪[1] 张勇军[1] 杨银 HONG Wenhui;LI Qinhao;ZHANG Yongjun;YANG Yin(School of Electric Power,South China University of Technology,Guangzhou 510641,China)

机构地区:[1]华南理工大学电力学院,广东广州510641

出  处:《电力自动化设备》2022年第9期133-138,共6页Electric Power Automation Equipment

基  金:国家自然科学基金资助项目(52177085);广州市科技计划项目(202102021208)。

摘  要:针对低压配电网数据完整性不足的场景,提出了一种基于二次矩阵补全的低压配电网相序识别算法。首先,分析了基于电流拟合的相序识别原理与模型;其次,研究了基于奇异值门限(SVT)算法的矩阵补全算法及其对缺失数据的一次补全方法;然后,为了进一步提升矩阵补全精度,提出了基于SVT算法的二次补全算法,并在此基础上构建了基于二次矩阵补全的低压配电网相序识别方法;最后,通过实际台区用电数据对所提算法进行算例分析。算例分析结果表明,所提算法适用于电流采集数据缺失的情况,能有效地降低电流矩阵补全的误差,从而提升低压配电网相序识别的准确率。For the scenario of insufficient data integrity,a quadratic matrix completion based phase sequence identification algorithm for low-voltage distribution network is proposed.Firstly,the principle and model of phase sequence identification based on current fitting are analyzed.Secondly,the matrix completion algorithm based on SVT(Singular Value Threshold)algorithm and its one-time completion method for missing data are studied.Thirdly,a secondary complement algorithm based on SVT algorithm is proposed in order to further improve the accuracy of matrix completion,based on which,a secondary matrix complement based phase sequence identification method for low-voltage distribution network is constructed.Finally,the proposed algorithm is analyzed by an example based on the actual station power data.The case analysis results show that the proposed algorithm is suitable for the condition of missing current acquisition data,and can effectively reduce the error of the current matrix completion,thereby improving the accuracy of the phase sequence identification of low-voltage distribution network.

关 键 词:低压配电网 拓扑识别 相序识别 奇异值门限 矩阵补全 

分 类 号:TM73[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象