检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李鑫辉 申情 张雄涛 LI Xinhui;SHEN Qing;ZHANG Xiongtao(School of Information Engineering,Huzhou University,Huzhou 313000,China;Zhejiang Province Key Laboratory of Smart Management&Application of Modern Agricultural Resources,Huzhou 313000,China;School of Science and Engineering,Huzhou College,Huzhou 313000,China)
机构地区:[1]湖州师范学院信息工程学院,浙江湖州313000 [2]浙江省现代农业资源智慧管理与应用研究重点实验室,浙江湖州313000 [3]湖州学院理工学院,浙江湖州313000
出 处:《大数据》2022年第5期139-152,共14页Big Data Research
基 金:国家自然科学基金资助项目(No.61771193,No.61802123);浙江省教育厅一般科研项目(No.Y202146028)。
摘 要:提出基于粒子群优化特征选择(PSOFS)算法和TSK(Takagi-Sugeno-Kang)模糊系统的心电信号分类模型,即基于PSOFS和TSK的并行集成模糊神经网络(PE-PT-FN),用于心电图预测。首先对训练集中的各类样本进行随机放回抽样,然后将抽样得到的样本合并在一起,再独立且并行地通过PSOFS算法进行特征选择。PSOFS算法中不同的位置表示不同的特征子集,初始位置随机的粒子经过多次迭代收敛至最佳位置。每个子集得到一个特征子集用于并行训练多组独立的小型TSK模糊神经网络(TSK-FNN)。模糊系统的可解释性和PSOFS算法挑选出来的特征子集能有效地帮助医学研究者找出心电信号数据与不同类型病例之间的关联。实验证明,PE-PT-FN在保留可解释性的前提下,能将预测结果的宏召回率提升至92.35%。A new classification model of electrocardiogram(ECG)signal based on particle swarm optimization feature selection(PSOFS)and TSK(Takagi-Sugeno-Kang)fuzzy system was proposed,i.e.,parallel ensemble fuzzy neural network based on PSOFS and TSK(PE-PT-FN),which was used for ECG prediction.Each class sample in the training set was randomly sampled,and the samples obtained by randomly sampled were added.Then,the feature selection method PSOFS was carried out independently and parallelly.In PSOFS,particles that were random initial positions represent different feature subsets and converge to the optimal positions after many iterations.Each subset had a corresponding feature subset.Several groups of TSK fuzzy neural network(TSK-FNN)were trained by each feature subset in parallel.Medical researchers could effectively find the correlation between ECG signal data and different types of disease through the interpretability of the fuzzy system and the feature subsets by the PSOFS algorithm.Experiments prove that PE-PT-FN greatly improves the macro-R to 92.35%while retaining interpretability.
关 键 词:TSK模糊神经网络 粒子群优化特征选择 集成学习 心电信号分类 不平衡数据
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222