检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xuanchun Dong Zhiguo Xu Xiaofei Zhao
机构地区:[1]Beijing Computational Science Research Center,Beijing 100084,P.R.China [2]Department of Mathematics,National University of Singapore,Singapore 119076,Singapore [3]College of Mathematics,Jilin University,Changchun 130012,P.R.China
出 处:《Communications in Computational Physics》2014年第7期440-466,共27页计算物理通讯(英文)
基 金:supported by the Singapore A*STAR SERC PSF-Grant 1321202067。
摘 要:In this work,we are concerned with a time-splitting Fourier pseudospectral(TSFP)discretization for the Klein-Gordon(KG)equation,involving a dimensionless parameterε∈(0,1].In the nonrelativistic limit regime,the smallεproduces high oscillations in exact solutions with wavelength of O(ε^(−2))in time.The key idea behind the TSFP is to apply a time-splitting integrator to an equivalent first-order system in time,with both the nonlinear and linear subproblems exactly integrable in time and,respectively,Fourier frequency spaces.The method is fully explicit and time reversible.Moreover,we establish rigorously the optimal error bounds of a second-order TSFP for fixedε=O(1),thanks to an observation that the scheme coincides with a type of trigonometric integrator.As the second task,numerical studies are carried out,with special effortsmade to applying the TSFP in the nonrelativistic limit regime,which are geared towards understanding its temporal resolution capacity and meshing strategy for O(ε^(−2))-oscillatory solutions when 0<ε≪1.It suggests that the method has uniform spectral accuracy in space,and an asymptotic O(ε^(−2)D^(t2))temporal discretization error bound(Dt refers to time step).On the other hand,the temporal error bounds for most trigonometric integrators,such as the well-established Gautschi-type integrator in[6],are O(ε^(−4)D^(t2)).Thus,our method offers much better approximations than the Gautschi-type integrator in the highly oscillatory regime.These results,either rigorous or numerical,are valid for a splitting scheme applied to the classical relativistic NLS reformulation as well.
关 键 词:Klein-Gordon equation high oscillation TIME-SPLITTING trigonometric integrator error estimate meshing strategy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195