Topological and dynamical phase transitions in the Su–Schrieffer–Heeger model with quasiperiodic and long-range hoppings  

在线阅读下载全文

作  者:Wei-Jie Zhang Yi-Piao Wu Ling-Zhi Tang Guo-Qing Zhang 

机构地区:[1]Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,School of Physics and Telecommunication Engineering,South China Normal University,Guangzhou 510006,China [2]Guangdong-Hong Kong Joint Laboratory of Quantum Matter,Frontier Research Institute for Physics,South China Normal University,Guangzhou 510006,China

出  处:《Communications in Theoretical Physics》2022年第7期146-153,共8页理论物理通讯(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.12104166);the Key-Area Research and Development Program of Guangdong Province(Grant No.2019B030330001);the Science and Technology of Guangzhou(Grant No.2019050001);the Guangdong Basic and Applied Basic Research Foundation(Grant No.2020A1515110290)。

摘  要:Disorders and long-range hoppings can induce exotic phenomena in condensed matter and artificial systems.We study the topological and dynamical properties of the quasiperiodic SuSchrier-Heeger model with long-range hoppings.It is found that the interplay of quasiperiodic disorder and long-range hopping can induce topological Anderson insulator phases with nonzero winding numbers ω=1,2,and the phase boundaries can be consistently revealed by the divergence of zero-energy mode localization length.We also investigate the nonequilibrium dynamics by ramping the long-range hopping along two different paths.The critical exponents extracted from the dynamical behavior agree with the Kibble-Zurek mechanic prediction for the path with W=0.90.In particular,the dynamical exponent of the path crossing the multicritical point is numerical obtained as 1/6~0.167,which agrees with the unconventional finding in the previously studied XY spin model.Besides,we discuss the anomalous and non-universal scaling of the defect density dynamics of topological edge states in this disordered system under open boundary condictions.

关 键 词:topological Anderson insulator higher winding number Kibble-Zurek machanic 

分 类 号:O469[理学—凝聚态物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象