检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张进 叶世著 吴艾璟 李博岩 李杰[3] 詹莜国[3] 彭海根 徐兴阳[3] ZHANG Jin;YE Shi-Zhu;WU Ai-Jing;LI Bo-Yan;LI Jie;ZHAN You-Guo;PENG Hai-Gen;XU Xing-Yang(Key Laboratory of Environmental Pollution Monitoring and Disease Control,Ministry of Education,School of Public Health,Guizhou Medical University,Guiyang 550025,China;Technology Centre,China Tobacco Guizhou Industrial Co.,Ltd,Guiyang 550009,China;Yunnan Tobacco Company Kunming Branch,Kunming 650051,China;Sichuan Vespec Technology Co.Ltd.,Chengdu 610041,China)
机构地区:[1]贵州医科大学公共卫生与健康学院,环境污染与疾病监控教育部重点实验室,贵阳550025 [2]贵州中烟工业有限责任公司技术中心,贵阳550009 [3]云南省烟草公司昆明市公司,昆明650051 [4]四川威斯派克科技有限公司,成都610041
出 处:《分析化学》2022年第9期1391-1398,共8页Chinese Journal of Analytical Chemistry
基 金:国家自然科学基金项目(No.22004022);贵州省科技厅科技计划项目(No.黔科合基础-ZK[2021]一般045);贵州省教育厅普通高等学校青年科技人才成长项目(No.黔教合KY字[2021]163)资助。
摘 要:近红外(Near-infrared,NIR)光谱法具有高效、无损的特点,然而其采集的光谱容易受多种外界因素的影响而发生漂移,导致分析结果出现偏差。时序漂移是一种NIR光谱随检测时间发生持续且有规律漂移的普遍现象。本研究提出了一种时序漂移NIR光谱的建模新方法,将漂移信号分解为背景漂移和样本依赖的时序漂移。分别利用连续小波变换(Continuous wavelet transform,CWT)和半监督-无参数模型增强(Semi-supervised parameter-free calibration enhancement,SS-PFCE)消除NIR光谱中时序背景漂移和样本依赖的时序信号漂移部分,进而实现准确建模。通过对2019年和2020年在云南省境内分别采集的928个和962个土壤样品的时序漂移NIR光谱进行建模,以土壤有机质(Soil organic matter,SOM)含量的预测准确性验证本方法的建模效果。对2019年采集的光谱建模(预测均方根误差(Root mean squared error of prediction,RMSEP)=6.7 g/kg,R 2=0.76),预测2020年采集的漂移光谱时出现了较大的偏差(RMSEP=31.3 g/kg,R 2=0.50)。通过CWT处理后的光谱建模预测,2020年光谱的预测结果明显变好(RMSEP=11.6 g/kg,R 2=0.66);通过SS-PFCE进行模型增强后有了进一步的提升(RMSEP=8.3 g/kg,R 2=0.67)。结果表明,CWT结合SS-PFCE能够最大程度消除NIR光谱中的时序漂移,获得较好的建模结果。Near-infrared(NIR)spectroscopy is a highly efficient and non-destructive technology applied in many areas.The measured spectra,however,are susceptible to shift due to various external interferences,resulting in biased analytical results.Time-shifts in NIR spectra are typical phenomena of continuously shifting spectra with measuring time,which is common in practical applications.In this study,a new method for modeling the time-shift NIR spectra was proposed,in which the shifting signal was divided into shifting background and sample-dependent shifts,and then corrected by continuous wavelet transform(CWT)and semi-supervised parameter-free calibration enhancement(SS-PFCE),respectively.The efficiency of the method was evaluated by modeling 1941 time-shift NIR spectra of soil samples collected in Yunnan Province(China)in 2019 and 2020 to predict the soil organic matter(SOM)content.The spectra taken in 2019 were calibrated(Root mean squared error of prediction(RMSEP)=6.7 g/kg,R 2=0.76)and a large deviation was observed in predicting the spectra taken in 2020(RMSEP=31.3 g/kg,R 2=0.50).After CWT treatment,the prediction of spectra measured in 2020 was significantly promoted by predicting the spectra(RMSEP=11.6 g/kg,R 2=0.66),and the prediction was further improved by SS-PFCE(RMSEP=8.3 g/kg,R 2=0.67).The results indicated that CWT and SS-PFCE were efficient for eliminating the shifting background and sample-related shifts in time-shift NIR spectra,respectively.
关 键 词:近红外光谱 时序漂移 半监督-无参数模型增强 土壤有机质
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.93.250