检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电脑知识与技术》2022年第22期66-69,共4页Computer Knowledge and Technology
摘 要:近年来,研究表明垃圾邮件已经出现在私人邮箱中,严重扰乱了用户体验。这也已成为各大通信公司的优先研究事项。基于传统的机器学习算法垃圾邮件过滤模型已经得到了充分的研究。随着研究人员在自然语言处理方面的深入研究,深度学习算法及其构建的模型表现效果远强于传统机器学习模型。本文基于现有的各类分类模型进行了研究及比较,讨论了如何对垃圾邮件数据集进行识别,并建立了BERT_DPCNN模型,以改进对电子邮件这种具有独特特征文本的识别方法。本文使用DPCNN作为垃圾邮件分类器,使用BERT预训练模型得到的文本向量作为DPCNN模型的输入,以此加强模型的分类效果,有助于提取到更多的语义信息,以此避免出现深度神经网络梯度消失所带来的问题。根据模型的召回率、准确率和F1指数,BERT_DPCNN模型可以比其他模型更有效地识别垃圾邮件。此外,从实验数据中可以看出,一些涉及深度模型的特征提取方法,如本文中的BERT模型,比基于word2vec的特征提取方法具有更明显的优势。本文构建的BERT_DPCNN模型可以存储更多的语义环境信息,为文本分类提供更多的基础,并提取更深层次的文本特征。它是一个具有最佳整体性能的模型,对垃圾邮件过滤具有重要价值。
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3