检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毕文婷 林海涛[1] 张立群 BI Wenting;LIN Haitao;ZHANG Liqun(College of Electronic Engineering,Naval University of Engineering,Wuhan Hubei 430033,China)
出 处:《计算机应用》2022年第9期2780-2787,共8页journal of Computer Applications
摘 要:当前网络安全事故频发,传统被动防御技术已经无法应对未知的网络安全威胁。针对这一问题,构建了多阶段演化信号博弈模型,并以防御方主动发射诱导信号进行安全防御为背景,提出了一种基于多阶段演化信号博弈模型的移动目标防御(MTD)决策算法。首先,以博弈双方不完全信息约束及完全理性前提为假设对模型的基本元素进行定义并进行模型整体理论分析;然后,设计了攻防策略的收益量化方法,并给出了详细的最优策略均衡求解过程;最后,引入MTD方法分析多阶段攻防情况下双方策略的演化趋势。实验结果表明,所提算法能准确预测出不同阶段最优防御策略,而且对新型网络主动防御技术研究具有指导意义。同时,通过蒙特卡洛仿真实验,将所提算法与传统随机均匀策略选择算法进行对比,所得结果验证了所提算法的有效性和安全性。Currently,the network security accidents occur frequently,and traditional passive defense technologies have no possible response to unknown network security threats. In response to this problem,a multi-stage evolutionary signal game model was constructed. And with the background that the defender actively launches inductive signals for security defense,a Moving Target Defense(MTD)decision-making algorithm based on the multi-stage evolutionary signal game model was proposed. Firstly,the basic elements of the model were defined and the overall model was analyzed theoretically based on the assumptions of incomplete information constraints and complete rationality of both sides of the game. Then,a method for quantifying the benefits of offensive and defensive strategies was designed,and a detailed optimal strategy solving process for equilibrium was given. Finally,the MTD method was introduced to analyze the evolution trends of both sides’ strategies in multi-stage attack and defense. Experimental results show that the proposed algorithm can predict the optimal defense strategies at different stages accurately,and has guiding significance for the research of new network active defense technology. At the same time,the results of comparing the proposed algorithm with the traditional random uniform strategy selection algorithm through Monte Carlo simulation experiment verify the effectiveness and safety of the proposed algorithm.
关 键 词:网络攻防 信号博弈 移动目标防御 演化博弈 多阶段演化
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.145.200