检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马峻[1,2] 姚震 徐翠锋[1,2] 陈寿宏[1,2] MA Jun;YAO Zhen;XU Cuifeng;CHEN Shouhong(School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin Guangxi 541004,China;Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(Guilin University of Electronic Technology),Guilin Guangxi 541004,China)
机构地区:[1]桂林电子科技大学电子工程与自动化学院,广西桂林541004 [2]广西自动检测技术与仪器重点实验室(桂林电子科技大学),广西桂林541004
出 处:《计算机应用》2022年第9期2885-2892,共8页journal of Computer Applications
基 金:国家自然科学基金资助项目(61671008);桂林电子科技大学研究生教育创新项目(2020YCXS095)。
摘 要:无人机(UAV)目标尺寸较小,多架无人机之间特征也不明显,且鸟类和飞虫的干扰给无人机目标的准确检测和稳定跟踪带来了巨大挑战。针对传统目标检测算法对小目标无人机检测性能差、跟踪不稳定的问题,提出一种基于改进PP-YOLO和Deep-SORT的多无人机实时跟踪算法。首先,将压缩-激励模块融入PP-YOLO检测算法中,以实现对无人机目标的特征提取和检测;其次,在ResNet50-vd结构中引入Mish激活函数,以解决反向传播过程中的梯度消失问题,并进一步提升检测精度;然后,采用Deep-SORT算法来实时跟踪无人机目标,并将提取外观特征的主干网络更换为ResNet50,从而改善原有网络对微小外观感知能力弱的状况;最后,引入损失函数Margin Loss,既提高了类别可分性,又加强了类内紧度和类间差异。实验结果表明,所提算法的检测平均精度均值(mAP)相比原始PPYOLO算法提升了2.27个百分点,跟踪准确性相对于原始Deep-SORT算法提升了4.5个百分点。所提算法的跟踪准确性可达91.6%,能够实时跟踪600 m以内多架无人机目标,有效解决了跟踪过程中的“丢帧”问题。The target size of the Unmanned Aerial Vehicle(UAV)is small,and the characteristics among multiple UAVs are not obvious. At the same time,the interference of birds and flying insects brings a huge challenge to the accurate detection and stable tracking of the UAV targets. Aiming at the problem of poor detection performance and unstable tracking of small target UAVs by using traditional target detection algorithms,a real-time tracking algorithm for multiple UAVs based on improved PaddlePaddle-YOLO(PP-YOLO)and Simple Online and Realtime Tracking with a Deep association metric(Deep-SORT)was proposed. Firstly,the squeeze-excitation module was integrated into PP-YOLO detection algorithm to achieve feature extraction and detection of UAV targets. Secondly,the Mish activation function was introduced into ResNet50-vd structure to solve the problem of vanishing gradient in the back propagation process and further improve the detection precision. Thirdly,Deep-SORT algorithm was used to track UAV targets in real time,and the backbone network that extracts appearance features was replaced with ResNet50,thereby improving the original network’s weak perceptual ability of small appearances. Finally,the loss function Margin Loss was introduced,which not only improved the class separability,but also strengthened the tightness within the class and the difference between classes. Experimental results show that the detection mean Average Precision(mAP)of the proposed algorithm is increased by 2. 27 percentage points compared to that of the original PP-YOLO algorithm,and the tracking accuracy of the proposed algorithm is increased by 4. 5percentage points compared to that of the original Deep-SORT algorithm. The proposed algorithm has a tracking accuracy of91. 6%,can track multiple UAV targets within 600 m in real time,and effectively solves the problem of "frame loss" in the tracking process.
关 键 词:无人机检测 实时跟踪 压缩-激励模块 Mish激活函数 Margin Loss
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222