检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹秀娟 马志柔[2] 朱涛 张庆文 杨燕[2] 叶丹[2] CAO Xiu-Juan;MA Zhi-Rou;ZHU Tao;ZHANG Qing-Wen;YANG Yan;YE Dan(School of Computer,Electronics and Information,Guangxi University,Nanning 530004,China;Technology Center of Software Engineering,Institute of Software,Chinese Academy of Sciences,Beijing 100190,China;Zhenghe Technology Co.Ltd.,Jinan 250000,China)
机构地区:[1]广西大学计算机与电子信息学院,南宁530004 [2]中国科学院软件研究所软件工程技术研究开发中心,北京100190 [3]政和科技股份有限公司,济南250000
出 处:《计算机系统应用》2022年第9期152-158,共7页Computer Systems & Applications
基 金:国家自然科学基金(61802381)。
摘 要:针对政策术语具有时效性、低频度、稀疏性和复合短语的特点,传统术语抽取方法难以满足需求的问题,设计实现了语义增强的多策略政策术语抽取系统.该系统从频繁项挖掘和语义相似度两个维度对政策文本特征进行建模,融合多种频繁模式挖掘策略选取特征种子词,利用预训练语言模型增强语义匹配来召回低频且稀疏的政策术语,实现了从无词库冷启动到有词库热启动半自动化的政策术语抽取.该系统能够提升政策文本分析效果,为建设智慧政务服务平台提供技术支持.Policy terms are characterized by timeliness, low frequency, sparsity, and compound phrases. To address the difficulty of traditional term extraction methods in meeting demands, we design and implement a semantic enhanced multi-strategy system of policy term extraction. The system models the features of policy texts from the two dimensions of frequent item mining and semantic similarity. Feature seed words are selected by integrating multiple frequent pattern mining strategies. Low-frequency and sparse policy terms are recalled by pre-training the language model and enhancing semantic matching. Transforming from a cold start without a thesaurus to a hot start with a thesaurus, the system achieves semi-automatic extraction of policy terms. The proposed system can improve the effect of policy text analysis and provide technical support for the construction of a smart government service platform.
分 类 号:C81[社会学—统计学] TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.50.164