检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李林[1] 张铎腾 渠允薇 LI Lin;ZHANG Duoteng;QU Yunwei(The Institute of Flexible Electronics(IFE,Future Technologies),Xiamen University,Xiamen,Fujian 361005,China)
机构地区:[1]厦门大学柔性电子(未来技术)研究院,福建厦门361005
出 处:《光子学报》2022年第8期168-181,共14页Acta Photonica Sinica
基 金:国家自然科学基金(No.22077101)。
摘 要:荧光显微成像技术的生物医学应用离不开荧光染料的设计与开发。有机小分子荧光染料因其易于修饰、生物相容性好、光物理性质优异等特点,在细胞生物成像领域受到了广泛关注。随着超分辨荧光显微镜的发展和技术的进步,使得荧光显微成像突破了光学衍射极限,可以获得更为精准的生物分子学信息,观察纳米尺度下亚细胞器之间的相互作用。根据不同的成像原理,科学家开发出了单分子定位成像技术、受激辐射损耗成像技术、结构光照明技术等超分辨荧光显微技术。这些技术在细胞荧光显微成像领域的应用与发展,同时对有机小分子荧光染料的设计与开发提出了新要求。本文介绍了主流超分辨荧光显微技术的原理,总结已发表的超分辨荧光显微成像荧光染料的结构和光物理性质特点,归纳了其设计要求,旨在为新型荧光染料的设计提供参考。In order to conduct imaging studies,researchers have developed a variety of biological imaging techniques,such as positron emission computed tomography,magnetic resonance imaging,scanning electron microscopy,fluorescence microscopy,etc. Among them,fluorescence imaging technology has its unique advantages:the images are obtained by acquiring the signals of photons,which is less toxic to the living cells and can realize real-time imaging of living cells;multi-color imaging is realized by dye staining in different fluorescence wavelength,and molecules in cells can be observed between interactions in cells.These advantages make fluorescence microscopy irreplaceable in the study of cell biology and pathology research. However,constrained by the diffraction limit,the ultimate resolution of fluorescence microscopy cannot exceed 200 nm,which does not meet the requirements for accurate observation of fine structures such as subcellular organelles;important physiological changes such as protein-protein interactions and subcellular organelle interactions. Diffraction limits the application of conventional fluorescence microscopy such as confocal fluorescence microscopy. In order to solve this problem,scientists have used different principles and methods to break the diffraction limit. The development of super-resolution fluorescence microscopy has greatly expanded the application of fluorescence microscopy in biomedical fields.At present,the most widely used super-resolution fluorescence microscopy mainly the following three categories:1)Single molecule localization imaging based on fluorescent molecular switching effect,mainly including photoactivated localization microscopy and stochastic fluorescence reconstruction microscopy;2)Stimulated emission depletion fluorescence microscopy based on excited state fluorescence excited loss;3)Structured light illumination fluorescence microscopy based on cosine structured light modulated high frequency signal. New imaging method have put forward new requirements for the development
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.85.79