基于FFT的感应测井信号频谱分析软件设计  被引量:1

Design of Induction Logging Signal Spectrum Analysis Software Based on FFT

在线阅读下载全文

作  者:杨晨 吴银川[1] 曹亢 Yang Chen;Wu Yinchuan;Cao Kang Shaanxi(Key Laboratory of Gas&Oil Logging and Control Technology,Xi'an Shiyou University,Xi'an,Shaanxi 710065,China)

机构地区:[1]西安石油大学陕西省油气井测控技术重点实验室,陕西西安710065

出  处:《石油工业技术监督》2022年第9期36-39,46,共5页Technology Supervision in Petroleum Industry

摘  要:针对感应测井信号的处理与分析,采用DIT-FFT方法引入寻峰算法设计了基于VS2015环境的信号频谱检测软件。推导了FFT算法计算频率、幅度、相位的理论公式,利用C#语言实现数据读入、波形显示、幅频显示(测量)、相频显示(测量)、报表生成等功能。在搭建的软件平台中利用噪声叠加、整周期采样和非整周期采样,对软件抗噪性、稳定性进行量化检验。结果表明,该频谱分析软件在信噪比低至5 dB的噪声干扰环境下进行整周期采样检测时,信号幅度的相对误差不大于0.31%,相位相对误差不大于1.14%,非整周期采样时,幅值相对误差不超过0.49%及相位相对误差不超过1.39%,满足工程测量要求。For the processing and analysis of induction logging signal, a signal spectrum detection software based on VS2015 environment is designed by adopting DIT-FFT method and introducing peak searching algorithm. The theoretical calculation formulas of frequency, amplitude and phase using FFT algorithm are derived, and data reading, waveform display, amplitude-frequency display(measurement), phase-frequency display(measurement), report generation and other functions are finished in C# language. In the software platform, the anti-noise and stability of the software are quantitatively tested by noise superposition, integral period sampling and nonintegral period sampling. The results show that when to use the software performs integral cycle sampling under the noise interference environment with signal-to-noise ratio as low as 5 d B, the relative error of the amplitude is no more than 0.31% and the relative error of phase is no more than 1.14%, and when performing non integral cycle sampling, the relative error of amplitude and phase is no more than 1.39%, which meets the requirements of engineering measurement.

关 键 词:感应测井 测井信号 频谱分析 快速傅里叶变换 软件设计 

分 类 号:P631.81[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象