检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ke OU Bin SHU Yu Feng YAO
机构地区:[1]School of Statistics and Mathematics,Yunnan University of Finance and Economics,Kunming 650221,P.R.China [2]School of Mathematical Sciences,East China Normal University,Shanghai 200241,P.R.China [3]Department of Mathematics,Shanghai Maritime University,Shanghai 201306,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2022年第8期1421-1435,共15页数学学报(英文版)
基 金:Supported by NSFC(Grant Nos.12071136,11671138,11771279,12101544);Shanghai Key Laboratory of PMMP(Grant No.13dz2260400);the Fundamental Research Funds of Yunnan Province(Grant No.2020J0375)。
摘 要:An algebraic group is called semi-reductive if it is a semi-direct product of a reductive subgroup and the unipotent radical.Such a semi-reductive algebraic group naturally arises and also plays a key role in the study of modular representations of non-classical finite-dimensional simple Lie algebras in positive characteristic,and some other cases.Let G be a connected semi-reductive algebraic group over an algebraically closed field F and g=Lie(G).It turns out that G has many same properties as reductive groups,such as the Bruhat decomposition.In this note,we obtain an analogue of classical Chevalley restriction theorem for g,which says that the G-invariant ring F[g]~G is a polynomial ring if g satisfies a certain“positivity”condition suited for lots of cases we are interested in.As applications,we further investigate the nilpotent cones and resolutions of singularities for semi-reductive Lie algebras.
关 键 词:Semi-reductive algebraic groups semi-reductive Lie algebras Chevalley restriction theorem nilpotent cone Steinberg map Springer resolution
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.172.197