基于现场监测成果的隧道洞口塌方段处理效果分析  被引量:4

Treatment Effects of Tunnel Entrance Collapse Section Based on Field Monitoring Results

在线阅读下载全文

作  者:郝付军[1] 黄阿岗[1] HAO Fujun;HUANG Agang(Shaanxi Railway Institute,Weinan,Shaanxi 714099)

机构地区:[1]陕西铁路工程职业技术学院,陕西渭南714099

出  处:《地质与勘探》2022年第5期1099-1107,共9页Geology and Exploration

基  金:陕西省渭南市科研计划项目(编号:2019ZDYF-JCYJ-129)资助。

摘  要:为评价隧道洞口塌方段的安全性,基于累计变形预测和变形速率趋势分析模型,结合工程实例,研究隧道洞口塌方段的处理效果。实例分析表明:在累计变形预测方面,GA-VMD模型在隧道变形数据的信息分解过程中具有明显的优越性,可利用其将隧道变形数据分解为趋势项和误差项,且通过组合预测能有效保证预测精度,得出累计变形的后期仍具一定增加趋势,但增加速率相对较小;在变形速率趋势分析方面,变形速率具下降趋势,且随时间持续,下降趋势更为显著。综合对比两者结果,隧道变形无明显增加趋势,并趋于稳定方向发展,说明塌方处理措施是合理有效的,为其防治效果评价提供了理论依据。In order to evaluate the safety of tunnel entrance collapse section,this work discussed the treatment effects of the tunnel entrance collapse section of an engineering example based on the cumulative deformation prediction and deformation rate trend judgment model.Example analysis shows that the GA-VMD model can be well utilized in information decomposition of tunnel deformation data in terms of cumulative deformation prediction.It can be used to decompose tunnel deformation data into trend term and error term,and combined prediction can effectively ensure the prediction accuracy.The cumulative deformation still shows some increasing trend in later stage,but the increasing rate is relatively small.In the analysis of deformation rate trend,the deformation rate has a downward trend,and this downward trend is more significant with time.Comprehensive comparison of the two results shows that the tunnel deformation shows no obvious increasing trend and tends to develop in a stable direction,indicating that the collapse treatment measures are reasonable and effective.This study provides a theoretical basis for the evaluation of collapse prevention and control.

关 键 词:隧道塌方 变分模态分解 核极限学习机 灰色模型 变形预测 Spearman秩次检验 

分 类 号:P2[天文地球—测绘科学与技术] U456.3[建筑科学—桥梁与隧道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象