基于DB-PAM4的高速SerDes自适应均衡器设计  被引量:1

Design of high-speed SerDes adaptive equalizer based on DB-PAM4

在线阅读下载全文

作  者:王和明[1] 王正 吕方旭[1,2] 吴苗苗 陆德超 WANG Heming;WANG Zheng;LYU Fangxu;WU Miaomiao;LU Dechao(Air and Missile Defense College,Air Force Engineering University,Xi'an 710000,China;College of Computer Science,National University of Defense Technology,Changsha 410073,China)

机构地区:[1]空军工程大学防空反导学院,陕西西安710000 [2]国防科技大学计算机学院,湖南长沙410073

出  处:《电子元件与材料》2022年第8期871-879,共9页Electronic Components And Materials

基  金:国家重点研发计划(2018YFB2202300)。

摘  要:PAM4编码作为如今高速串口的主流编码方式,其均衡存在多种方式,但是传统的均衡方式所需均衡强度大,抽头数量多,算法自适应调节复杂。基于此,提出了一种基于背板信道的联合自适应均衡算法——Co-LMS算法,旨在降低均衡强度的同时,减少抽头数量,提高算法的收敛速度。算法对原始PAM4信号进行预编码处理,各种均衡器结合信道特性在接收端生成DB-PAM4信号。该算法在MATLAB中进行了行为级仿真验证。结果表明,在112 Gb/s的数据传输速率下,信道衰减达到-35 dB,16抽头的FFE和1抽头的DFE就能完成均衡处理,且能在28 ns内达到稳定,相较于传统的均衡器算法抽头数量大大减少,收敛更快。PAM4 encoding,the mainstream encoding method for high-speed serial interface port today,could be equalized by a variety of methods.However,the traditional equalization method requires large equalization intensity,large number of taps and complex adaptive adjustment.Because of that,a joint adaptive equalization algorithm was proposed based on backplane channel-Co-LMS algorithm,which aims to reduce the equalization strength,reduce the number of taps and improve the convergence speed of the algorithm.The algorithm principle was that the original PAM4 signal was first pre-coded,and then various equalizers combined the channel characteristics to generate the DB-PAM4 signal at the receiver.The algorithm was verified by behavior level simulation in MATLAB.And it turns out that at 112 Gb/s data rate,channel attenuation reaches-35 dB.16 taps FFE and 1 tap DFE can complete the equalization process,and can be stable within 28 ns.Compared with the traditional equalizer algorithm,the number of taps is greatly reduced and the convergence is faster.

关 键 词:DB-PAM4信号 自适应均衡 联合自适应均衡算法 双二进制 

分 类 号:TN715[电子电信—电路与系统] TN911.7

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象