检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WANG Xuehui WRIGHT Edward GAO Neng LI Ying
机构地区:[1]Fluids and Thermal Engineering Research Group,Faculty of Engineering,University of Nottingham,Nottingham,NG72RD,UK [2]Ningbo Institute of Technology,Zhejiang University,Ningbo,315100,China [3]Research Centre for Fluids and Thermal Engineering,University of Nottingham Ningbo China,Ningbo,315100,China
出 处:《Journal of Thermal Science》2022年第5期1465-1475,共11页热科学学报(英文版)
基 金:sponsored by the following research grants:National Science Foundation of China(No 51906216)。
摘 要:The application of the excess entropy scaling(EES)method to predict the viscosity,thermal conductivity and thermal diffusivity of HFC/HFO refrigerants is evaluated in this paper.The universal coefficients of the EES model were firstly obtained from the properties of HFC refrigerants,and the accuracy of the model was further investigated with HFO properties.It was suggested that the EES model correlated the viscosity very well with the average absolute deviations(AADs)of most HFC refrigerants lower than 6.55%except R32.The correlations also provided very good prediction on the viscosity for R1234yf and R1234ze(E),but not for R1336mzz(Z).The prediction of thermal conductivity for both HFC and HFO refrigerants was generally well with the maximum AAD of 11.44%.However,the paper also indicated that there were no universal thermal diffusivity coefficients for even HFC refrigerants,and the linear function could not fit the thermal diffusivity curve very well.Therefore,the exclusively two-order polynomial correlations based on the EES model were presented for each HFC/HFO refrigerant.
关 键 词:excess entropy scaling HFO HFC transport properties REFRIGERANTS
分 类 号:TB64[一般工业技术—制冷工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171