检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵小虎 车亭雨 叶圣 田贺 张凯 ZHAO Xiaohu;CHE Tingyu;YE Sheng;TIAN He;ZHANG KAI(The National Joint Engineering Laboratory of Internet Applied Technology of Mines,Xuzhou 221008,China;School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221008,China;School of Safety Engineering,China University of Mining and Technology,Xuzhou,221008,China)
机构地区:[1]矿山互联网应用技术国家地方联合工程实验室,江苏徐州221008 [2]中国矿业大学信息与控制工程学院,江苏徐州221008 [3]中国矿业大学安全工程学院,江苏徐州221008
出 处:《工矿自动化》2022年第9期92-99,共8页Journal Of Mine Automation
基 金:中央高校基本科研业务费专项资金资助项目(2020ZDPY0223)。
摘 要:红外辐射可反映煤岩受载破坏情况,用于监测和预防煤岩动力灾害,但红外热像仪生成的红外热像图像素分辨率低、噪声较大,导致检测结果受主观因素影响较大,无法准确识别煤体损伤区域。将深度学习和红外热像结合进行无损检测已成为趋势,但目前结合深度学习和红外热像对煤体受载破坏进行识别检测的研究相对较少。针对上述问题,提出一种基于多尺度通道注意力模块(MS-CAM)U-Net模型的煤体红外热像异常区域分割方法。在传统U-Net模型的编码器中引入MS-CAM,设计了基于MS-CAM的U-Net模型结构,使模型在关注煤体红外热像异常区域显著特征的同时,还关注异常区域小目标特征,以提高异常区域分割精度。为降低煤体红外热像数据集匮乏对模型准确率和适用性的影响,对创建的煤体红外热像数据集进行数据增强操作,并采用MS COCO数据集对基于MS-CAM的U-Net模型进行预训练,再采用煤体红外热像数据集训练,得出最终网络权重。实验结果表明,该方法可有效分割煤体红外热像异常区域,精确率、F1分数、Dice系数和平均交并比分别为94.75%,94.94%,94.65%,90.03%,均优于Deeplab模型、U-Net模型和基于SENet注意力机制的U-Net模型。Infrared radiation can reflect the damage of coal and rock under load, and can be used to monitor and prevent the dynamic disaster of coal and rock. But the infrared thermal image generated by the infrared thermal imager has low pixel resolution and large noise, which leads to the detection result being greatly affected by subjective factors. Therefore, the damaged area of the coal body cannot be accurately identified. It has become a trend to combine deep learning with infrared thermal imaging for nondestructive testing. But the research on the identification and detection of coal damage under load by combining deep learning and infrared thermal imaging is relatively few. In order to solve the above problems, a segmentation method of the abnormal area of coal infrared thermal image based on multi-scale channel attention module(MS-CAM) U-Net model is proposed. The MS-CAM is introduced into the encoder of the traditional U-Net model,and the U-Net model structure based on MS-CAM is designed.The model not only pays attention to the major characteristics of the coal infrared thermal image abnormal area,but also pays attention to the small target characteristics of the abnormal area,so as to improve the segmentation accuracy of the abnormal area.In order to reduce the influence of the lack of coal infrared thermal image data set on the accuracy and applicability of the model,the data enhancement operation is carried out on the created coal infrared thermal image data set.The MS-CAM-based U-Net model is pre-trained by using the MS COCO data set.Then the coal infrared thermal image data set is used for training to obtain the final network weight.The experimental result shows that the method can effectively segment the abnormal areas of the infrared thermal image of the coal body.The accuracy rate,the F1 score,the Dice coefficient and the average cross-combination ratio are 94.75%,94.94%,94.65%,and 90.03%respectively.The results are superior to the Deeplab model,the U-Net model and the U-Net model based on the attention
关 键 词:煤岩动力灾害 煤岩受载破坏 红外辐射 红外热像 异常区域分割 U-Net模型 多尺度通道注意力模块 深度学习
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15