基于车载激光雷达的架空光缆线路智能巡检应用  被引量:2

Application of Intelligent Inspection of Overhead Optical Cable Line Based on Vehicle LiDAR

在线阅读下载全文

作  者:文帅川[1] 颜丽娟 WEN Shuai Chuan;YAN Li Juan(China telecom group hubei corporation,Hubei Transmission Bureau,Wuhan 430000,China;China telecom group hubei corporation,Intelligent Cloud network dispatching operation center,Wuhan 430000,China)

机构地区:[1]中国电信股份有限公司湖北分公司省云网优化运营中心,湖北武汉430000 [2]中国电信股份有限公司湖北分公司省智能云网调度运营中心,湖北武汉430000

出  处:《长江信息通信》2022年第8期124-126,共3页Changjiang Information & Communications

摘  要:随着通信网络建设规模越来越庞大和复杂,光缆运行维护面临的挑战逐渐增加。文章利用基于车载一体化激光雷达与影像巡检采集系统,采集架空光缆线路走廊巡检图像,以及高精度三维激光点云数据,构建架空光缆三维场景,提供点云测量工具,更新杆路坐标位置,整理光缆线路结构关系,完善资源台账信息,利用图像与三维激光点云数据分析杆路隐患,通过内业数据分析与处理实现通信线路智能巡检新技术应用,实施标准化作业流程,极大提高巡检作业效率和成果准确性,提高架空光缆线路日常维护管理和故障预防水平。With the increasing scale and complexity of communication network construction,the challenges faced by optical cable operation and maintenance are gradually increasing.This paper uses the vehicle-based integrated lidar and image inspection and acquisition system to collect overhead optical cable corridor inspection images and high-precision 3D laser point cloud data to construct a three-dimensional aerial optical cable scene,provide point cloud measurement tools,and update the pole road coordinate position.,sort out the structural relationship of optical cable lines,improve resource ledger information,use images and 3D laser point cloud data to analyze hidden dangers of poles,realize the application of new technologies for intelligent inspection of communication lines through internal data analysis and processing,and implement standardized operation procedures.Improve the efficiency of inspection operations and the accuracy of results,and improve the daily maintenance management and fault prevention of overhead optical cable lines.

关 键 词:架空光缆 车载激光雷达 巡检应用 高精度定位 资源清查 

分 类 号:TN913.23[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象