基于改进CNN的HRRP目标识别方法  被引量:2

Radar HRRP target recognition based on improved CNN

在线阅读下载全文

作  者:李月琴 张红莉 张维 米雅洁 修丽梅 LI Yueqin;ZHANG Hongli;ZHANG Wei;MI Yajie;XIU Limei(School of Smart City,Beijing Union University,Beijing 100101,China)

机构地区:[1]北京联合大学智慧城市学院,北京100101

出  处:《兵器装备工程学报》2022年第8期265-274,共10页Journal of Ordnance Equipment Engineering

基  金:北京市自然科学基金青年项目(4194078);智慧北京各业务信息系统数据结构特征与数据模型详细分类研究(ZB10202004)。

摘  要:针对HRRP目标识别的传统识别方法识别率低、模型泛化能力不足,提出了一种适合HRRP样本数据的改进CNN模型;采用一维CNN对HRRP样本进行深层特征提取和目标识别,在构建CNN时引入BN算法加快了损失函数的收敛速度;设计了LGBM分类器作为CNN的分类层,有效提高HRRP识别率和识别速度,进一步提升了模型的识别性能;通过与改进前CNN和传统识别方法的对比实验,结果表明所提的改进CNN在提高目标识别率的同时也有效提升了识别速度,可为后续进行HRRP目标识别提供参考。To address the problems of low recognition rate,insufficient generalization ability of the model,and that the design of CNN structure still needs to be improved for the traditional recognition method of HRRP target recognition,an improved CNN model suitable for HRRP sample data was proposed.The method adopts a one-dimensional CNN for deep feature extraction and target recognition of HRRP samples,and introduces the BN algorithm in constructing the CNN to accelerate the convergence speed of the loss function.The LGBM classifier was designed as the classification layer of the CNN,which effectively improves the recognition rate and recognition speed of HRRP and further enhances the recognition effect of the model.Through the comparison experiments with the pre-improved CNN and the traditional recognition method,the results show that the proposed improved CNN improves the target recognition rate while effectively enhancing the recognition speed,which can provide a reference for the subsequent HRRP target recognition.

关 键 词:高分辨距离像 雷达目标识别 卷积神经网络 特征提取 轻量级梯度提升机 

分 类 号:TN957.52[电子电信—信号与信息处理] TP391.4[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象