检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘科研 周方泽 周晖[2] 王存平[3] LIU Keyan;ZHOU Fangze;ZHOU Hui;WANG Cunping(China Electric Power Research Institute,Haidian District,Beijing 100192,China;College of Electrical Engineering,Beijing Jiaotong University,Haidian District,Beijing 100044,China;State Grid Beijing Electric Power Company,Xicheng District,Beijing 100045,China)
机构地区:[1]中国电力科学研究院有限公司,北京市海淀区100192 [2]北京交通大学电气工程学院,北京市海淀区100044 [3]国网北京市电力公司,北京市西城区100045
出 处:《电网技术》2022年第8期3231-3239,共9页Power System Technology
基 金:国家电网公司科技项目(52020116000G)。
摘 要:低压配电网台区位于输配电系统的末端,是开展配电系统管控的基础环节。受不可抗力的影响,台区终端采集数据普遍存在缺失值,整体数据质量较差,进而影响信息的正确性和决策分析的准确度。传统的数据修复方法忽略了台区数据的周期性和时序性,修复精度较低。该文提出一种基于生成对抗网络(generative adversarial network,GAN)的配电网台区缺失采集数据修复模型,改进了GAN网络的结构,为判别器额外设计了提示机制,使其能够尽可能地利用未缺失信息,潜在地拟合原始数据的分布特征。所提出的方法不需要利用完整的数据集进行训练,整体运行在无监督的环境下,更适用于复杂的生产实际,实验结果表明,所提方法能够高精度地对台区缺失数据进行修复。The low-voltage transformer districts, located at the end of power system, is the key point of the distribution network management and control. Affected by different factors, missing data is common in the district teminals, and the overall data quality is poor, which in turn affects the information accuracy and decision analysis. The traditional method of data imputation ignores the periodicity and temporality of district data and the imputation accuracy is relatively low. This paper proposes a model for imputating missing data in transformer district terminals based on the generative adversarial network, and a hint mechanism is additionally designed for the discriminator. The structure of GAN is improved to make it possible to use as much unmissing information as possible to potentially fit the distribution characteristics of the original data. The proposed method does not need to use a complete data set for training. It runs in an unsupervised environment, more suitable for practices. The experimental results show that the proposed method can impute the missing data with high precision.
分 类 号:TM721[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46