检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余贤宾 王荣辉[1] 陈山亭[2] 甄晓霞[1] 张卓杰 YU Xianbin;WANG Ronghui;CHEN Shanting;ZHEN Xiaoxia;ZHANG Zhuojie(School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,Guangdong,China;The 5th Engineering Co.,Ltd.,MBEC,Jiujiang 332001,Jiangxi,China;State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University,Shijiazhuang 050043,Hebei,China;Innovation Center for Wind Engineering and Wind Energy Technology of Hebei Province,Shijiazhuang 050043,Hebei,China)
机构地区:[1]华南理工大学土木与交通学院,广东广州510640 [2]中铁大桥局集团第五工程有限公司,江西九江332001 [3]石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室,河北石家庄050043 [4]河北省风工程和风能利用工程技术创新中心,河北石家庄050043
出 处:《华南理工大学学报(自然科学版)》2022年第7期43-55,共13页Journal of South China University of Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(52178138,51908382);河北省自然科学基金资助项目(E2019210311)。
摘 要:为了高效地得到平行钢绞线斜拉索施工过程中各股钢绞线的控制张力的高精度解,研究了描述斜拉索静力状态的参数间的非线性关系,提出了各股钢绞线控制张力的高精度、无迭代求解方法。基于斜拉索悬链线索形精确解,采用泰勒展开求解了张拉完成时斜拉索无应力索长的高精度近似解;基于正装分析法和等值张拉法两个基本原则,推导了在平行钢绞线斜拉索施工过程中,张拉不同钢绞线时斜拉索的等效静力状态;通过对无应力索长、斜拉索等效截面积和斜拉索投影长度的近似处理,求解了各股钢绞线的控制张力的高精度解。以珠海市洪鹤大桥主桥(主跨500m的叠合梁斜拉桥)、珠海市鸡啼门大桥(主跨210m的预应力混凝土斜拉桥)及两篇文献中的斜拉索为算例,计算了本文方法的近似解与迭代求解的悬链线精确解之间的误差。结果表明:本研究提出的方法计算的斜拉索无应力索长与悬链线精确解的误差小于0.002%,各股钢绞线张拉力误差小于2%,完全满足现场施工的精度要求;本文方法精度高、计算代价小,具有极高的推广和应用价值。In order to obtain the high-accuracy solution for control tension of each strand of stay-cables during con⁃struction,this paper studied the nonlinear relationships among the parameters describing the static state of cables and proposed a high-accuracy and non-iteration solving method for control tension of each steel strand.Based on the exact solution of the catenary of the cable shape,the high-precision and approximate solution of the stress-free length of the cable was solved by the Taylor expansion method.Based on the two basic principles of forward assem⁃bly analysis and equivalent tensioning method,the equivalent static state of steel strands during the construction process was obtained by recursive calculation when different steel strands were tensioned.The high-precision solu⁃tion for the control tension of each steel strand was solved by approximating the unstressed cable length,the equiva⁃lent cross-sectional area and the projected length of the diagonal cable.Taking the stay-cables of the main bridge of the Honghe Bridge(a composite girder cable-stayed bridge with a main span of 500 meters)in Zhuhai city,the Jiti⁃men Bridge(a prestressed concrete cable-stayed bridge with a main span of 210 meters)in Zhuhai city and cables mentioned in two literatures as examples,the error between the approximate solution of the method in this study and the exact solution of the catenary of iterative solution was calculated.The results show that the calculated error of the stress-free cable length between the method proposed in this paper and the catenary solution is less than 0.002%,and the tension error of each strand is less than 2%,which fully meet the accuracy requirements of con⁃struction.The method presented in this paper has the advantages of high precision and low calculation cost,so it has a high value of popularization and application.
分 类 号:U443.38[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.18.167