基于M-ANFIS-PNN的目标威胁评估模型  

Target threat assessment model based on M-ANFIS-PNN

在线阅读下载全文

作  者:于博文 于琳 吕明[1] 张捷[1] YU Bowen;YU Lin;LYU Ming;ZHANG Jie(School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China)

机构地区:[1]南京理工大学自动化学院,江苏南京210094

出  处:《系统工程与电子技术》2022年第10期3155-3163,共9页Systems Engineering and Electronics

基  金:江苏省自然科学基金(BK20180467)资助课题。

摘  要:目标威胁评估的目的是根据目标的属性和状态信息对目标的威胁程度进行定量估计,为后续作战决策提供辅助支持。现有威胁评估模型大多依赖于数值信息,难以有效处理包含定性、定量数据的目标特征信息。基于此,提出一种改进的自适应模糊神经推理系统模型。在自适应模糊神经推理系统的基础上,引入前件影响矩阵和后件影响矩阵对定性数据进行处理,使得定量、定性数据的影响同时作用于模糊规则的前件参数和后件参数;为了进一步提高模型的输出精度,将自适应模糊神经推理系统的输出层替换为多项式神经网络;通过基于Gower距离的近邻传播聚类算法对改进模型进行结构辨识,确定模糊规则的初始参数。仿真实例验证了所提方法的有效性与可行性,与其他混合属性数据建模方法相比,所提方法具有较高的预测精度,可为作战指挥决策提供有效的辅助支持。The purpose of target threat assessment is to quantitatively estimate the threat level of the target based on the target’s attributes and status information and provide auxiliary support for operational decision-making.Existing threat assessment models mostly rely on numerical information,and it is difficult to effectively process target feature information containing qualitative and quantitative data.Based on this,this paper proposes an improved adaptive network based fuzzy inference system model.On the basis of the adaptive network based fuzzy inference system,the antecedent influence matrix and the consequent influence matrix are introduced to process the qualitative data,so that the influence of the quantitative and qualitative data acts on the antecedent parameters and the consequent parameters of the fuzzy rules at the same time.In order to further improve the output accuracy of the model,the output layer of the adaptive network based fuzzy inference system is replaced with a polynomial neural network.The structure of the improved model is identified by the affinity propagation clustering algorithm based on Gower distance,and the initial parameters of the fuzzy rules are determined.Simulation examples verify the effectiveness and feasibility of the proposed method.Compared with other mixed attribute data modeling methods,the proposed method has a higher prediction accuracy and can provide effective auxiliary support for battle command decision-making.

关 键 词:威胁评估 自适应模糊神经推理系统 多项式神经网络 混合属性 近邻传播聚类算法 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象