检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹弋[1] 张贝贝 李诗文 CAO Yi;ZHANG Beibei;LI Shiwen(School of Traffic and Transportation Engineering,Dalian Jiaotong University,Dalian 116028,China)
机构地区:[1]大连交通大学交通运输工程学院,辽宁大连116028
出 处:《大连交通大学学报》2022年第4期8-13,共6页Journal of Dalian Jiaotong University
基 金:辽宁省教育厅科学研究计划资助项目(JDL2020017);辽宁经济社会发展研究课题资助项目(2022lslybkt-022);大连市社科院(研究中心)立项课题资助项目(2021dlsky050,2022dlsky078)。
摘 要:为了揭示冰雪条件对城市道路交通事故严重程度的影响规律,对寒冷地区该类事故的天气、道路线形、道路防护设施等影响因素进行显著性研究.援引我国黑龙江省2017-2019年发生的6891起城市道路交通事故数据,对于冰雪季和非冰雪季的事故严重程度影响因素,由比例优势模型分别确定并进行对比分析.利用比例优势模型筛选出节点变量,关于事故严重程度,构建贝叶斯网络预测模型.研究表明:该类事故的严重程度在冰雪季受天气、能见度、防护设施类型、路面状况、路面结构、道路类型、照明条件因素的影响显著;贝叶斯网络预测模型能够依据影响因素信息,较准确地预测事故严重程度.In order to reveal the influence of ice and snow conditions on the severity of urban road traffic accidents,the weather,road alignment,road protection facilities and other influencing factors of such accidents in cold regions were studied.The data of 6891 urban road traffic accidents in Heilongjiang Province from 2017 to 2019 were cited.The proportional odds model was used to screen out the significant influencing factors of the accident severity in the ice snow season and non ice snow season with contrastive analysis.The Bayesian network model of accident severity is constructed by using the node variables selected by proportional odds model.The research result shows that the severity of such accidents is significantly affected by weather,visibility,type of protective facilities,road condition,road structure,road type and lighting conditions in the ice snow season.The Bayesian network model of accident severity can accurately predict the accident severity based on the information of influencing factors.
关 键 词:交通安全 冰雪条件 事故严重程度 比例优势模型 影响因素
分 类 号:U491.31[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.205.60