检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘爽 经志友[1] 詹海刚[1] LIU Shuang;JING Zhiyou;ZHAN Haigang(State Key Laboratory of Tropical Oceanography(South China Sea Institute of Oceanology,Chinese Academy of Science),Guangzhou 510301,China;University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]热带海洋环境国家重点实验室(中国科学院南海海洋研究所),广东广州510301 [2]中国科学院大学,北京100049
出 处:《热带海洋学报》2022年第5期1-16,共16页Journal of Tropical Oceanography
基 金:国家自然科学基金(92058201、41776040、41949907、42149907);中国科学院基础前沿科学研究计划原始创新项目(ZDBS-LY-DQC011);广州市科学研究计划(201904010420)。
摘 要:中尺度涡蕴含海洋超过90%的动能,显著影响海洋物质能量循环。对中尺度涡的预报是目前物理海洋学研究的热点和难点。文章基于卫星高度计观测的近30年海表面高度异常数据(sea level anomaly,SLA),采用基于博弈思想的生成对抗网络方法(generative adversarial networks,GAN),构建了中尺度涡预报模型,进行了28天预报,并采用独立样本分析了预报涡旋的空间分布、时间分布、能量强度等特征参数,探讨影响预报结果准确性和时效性的主要因素。结果表明,半径为100~200km的涡旋在15天左右的预报时长仍能保持较好的准确性及时效性,误差在20%以内。该区域的平均涡动能约为0.875m^(2)·s^(-2),其预报的均方根误差(root mean square error,RMSE)普遍介于0.02~0.04m^(2)·s^(-2)。且涡旋预报结果受异常天气影响较小,在正常天气条件和台风娜基莉条件下具有相似的预报能力。这些结果对进一步理解并应用生成对抗网络这一新方法预报海洋中尺度涡提供了参考。Mesoscale eddies occupy more than 90% of the kinetic energy in oceans,which significantly impact on the oceanic mass and energy cycle.The prediction of mesoscale eddies remains a very essential,but difficult research topic in the current physical oceanography field.Based upon the sea level anomaly(SLA)data measured by satellite altimeter in the last 30 years,this study develops a model for the mesoscale eddy prediction according to the generative adversarial networks(GAN)method and game theory.The results of 28-day prediction,their spatial-temporal distributions,and energy intensities are analyzed with independent samples.The main factors that affect the spatial and temporal accuracies are discussed.The results show that the temporal accuracy of this method can be accepted in about 15 days.For the mesoscale eddies with a radius of 100~200 km,the prediction error is generally less than 20% by this method.The mean eddy kinetic energy in the study domain is about 0.875 m^(2)·s^(-2) and the root mean square error(RMSE)is roughly between 0.02~0.04 m^(2)·s^(-2).Furthermore,the results are suggestive of that the prediction is less affected by abnormal weather,and has similar forecasting ability under normal weather conditions and typhoon Nakri.These results provide a reference for further understanding and applying the new method of generative adversarial networks to predict ocean mesoscale eddies.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.98.193