检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓慧[1] 崔亚飞 DENG Hui;CUI Yafei(School of Intelligent Manufacturing and Construction Engineering,Yongzhou Vocational and Technical College,Yongzhou 425100,Hunan)
机构地区:[1]永州职业技术学院智能制造与建筑工程学院,湖南永州425100
出 处:《济源职业技术学院学报》2022年第3期59-62,共4页Journal of Jiyuan Vocational and Technical College
基 金:永州市教育科学规划课题(YJK021A016)。
摘 要:传统铝型材目标检测算法的准确率较低,严重影响铝型材的美观和质量。本文在Faster R-CNN网络的基础上,用ResNeXt105(残差网络)代替原始VGG16(经典卷积神经网络)提取图像特征,设计了Cascade Faster R-CNN的网络结构,采用FPN(特征金字塔网络)提取多尺度特征图并进行特征图融合。实验结果表明,在2722张图像测试集上,Faster R-CNN模型准确率为62.7%,本网络模型测试准确率达到81.4%,提高了18.7%。故相比于其他网络模型,本文的Faster R-CNN模型具有更强的特征提取能力和泛化能力,为类似小目标检测提高了技术参考。the accuracy of traditional aluminum profile target detection algorithm is low,which seriously affects the beauty and quality of aluminum profile.Based on the Fast R-CNN network,this paper uses the residual network ResNeXt105 to extract the image features instead of the original classical convolutional neural network vgg16,designs the network structure of Cascade Fast R-CNN,and uses the feature pyramid network FPN to extract the multi-scale feature map and fuse the feature map.The experimental results show that on 2722 image test sets,the accuracy of Fast R-CNN model is 62.7%,and the accuracy of this network model is 81.4%,an increase of 18.7%.Therefore,compared with other network models,the Fast R-CNN model in this paper has stronger feature extraction ability and generalization ability,which improves the technical reference for similar small target detection.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28