检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董秀春[1] 刘忠友[1] 蒋怡[1] 郭涛 李宗南[1] Dong Xiuchun;Liu Zhongyou;Jiang Yi;Guo Tao;Li Zongnan(Institute of Remote Sensing and Digital Agriculture,Sichuan Academy of Agricultural Sciences,Chengdu 610066,China)
机构地区:[1]四川省农业科学院遥感与数字农业研究所,四川成都610066
出 处:《遥感技术与应用》2022年第3期564-570,共7页Remote Sensing Technology and Application
基 金:四川省科技计划项目“农业大数据资产化管理及智能分析应用系统”(2021YFG0028);成都市重点研发支撑计划技术创新研发项目“互联网+机器学习下的农情遥感监测方法与大数据平台”(2019-YF05-01368-SN)。
摘 要:为使用高分辨率遥感影像和深度学习语义分割模型实现快速准确的小麦种植空间信息提取,以WorldView-2遥感影像为数据源,制作尺度分别为128×128、256×256、512×512的样本数据集,对U-net和DeepLab3+语义分割模型的参数进行训练,建立小麦遥感分类模型;通过与极大似然和随机森林方法比较,检验深度学习分类效果。结果显示:(1)不同尺度样本训练得到的模型总体精度、Kappa系数分别在94%和0.82以上,模型精度稳定,样本尺度大小对小麦分类提取模型影响较小;(2)深度学习方法的小麦分类总精度和Kappa系数分别在94%和0.89以上,极大似然和随机森林则在92%和0.85以下,表明该研究建立的小麦遥感分类模型优于传统分类方法。研究结果可为高分辨率遥感影像作物种植信息的深度学习方法提取提供参考。In order to realize fast and accurate extraction of winter wheat planting spatial information by using high-resolution remote sensing image and deep learning semantic segmentation model,worldView-2 remote sensing image was used as the data source to produce the sample data sets with the scales of 128×128,256×256 and 512×512,which trained the parameters of U-net and DeepLabv3+ semantic segmentation model to establish remote sensing classification model of winter wheat. The classification effects of deep learning was tested by comparing with maximum likelihood and random forest methods. The results showed that:(1)the overall accuracy and Kappa coefficient of the models obtained by training samples of different scales were more than94% and 0.82,and the model accuracy was stable,which indicated that the sample sizes have little influence on the semantic segmentation model of winter wheat classification.(2)The overall classification accuracy and Kappa coefficient of the deep learning methods were above 94% and 0.89,while the maximum likelihood and random forest were below 92% and 0.85,respectively. This results suggested that the remote sensing classification model of winter wheat established in this study was superior to the traditional classification methods. The results can provide the references for the deep learning methods of crop planting information extraction with high resolution remote sensing image.
关 键 词:高分辨率影像 U-net DeepLabv3+ 小麦 信息提取
分 类 号:S127[农业科学—农业基础科学] TP75[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.88.23