检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡学敏 杜娟[1] 闫献国[1] 智红英[1] 雍博皓 HU Xue-min;DU Juan;YAN Xian-guo;ZHI Hong-ying;YONG Bo-hao(School of Mechanical Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出 处:《太原科技大学学报》2022年第5期407-411,416,共6页Journal of Taiyuan University of Science and Technology
基 金:山西省自然科学基金(201901D111237);山西省青年科学基金(201901D211285)。
摘 要:针对复杂曲面的轮廓度误差评定问题,提出了一种将差分进化法与粒子群法相结合的方法,用来解决误差评定过程中实测点与理论曲面的优化匹配问题。首先,根据最小区域法建立复杂曲面的数学模型,其中包含了实际测量点坐标的平移旋转变化;然后选用一种无限分割复杂曲面的方法求取实际测量点到理论曲面的最小距离;接着,将粒子群法混入差分进化算法当中实现种群粒子的多样性,大大提升了算法的收敛速度,进而结合点到曲面最小距离的计算优化复杂曲面的轮廓度误差评定目标函数;最后将差分粒子法、差分进化法、粒子群法分别结合分割曲面逼近算法计算复杂曲面的轮廓度误差值,实验结果显示该方法与单独使用差分进化法和单独使用粒子群法相比极大的提高了轮廓度误差值的准确性,通过实验验证该方法比较可靠。Aiming at the problem of contour error evaluation of complex curved surfaces,a method combining differential evolution method and particle swarm method is proposed to solve the problem of optimal matching between measured points and theoretical curved surfaces in the error evaluation process.Firstly,a mathematical model of the complex surface is established according to the minimum area method,which involves the translational and rotational changes of the measured point coordinates;the segmented surface approximation algorithm is used to accurately calculate the shortest distance from the measured point to the theoretical surface;then,the particle swarm method is mixed into differential evolution.The algorithm realizes the diversity of the population particles,which greatly improves the convergence speed of the algorithm,and then combines the calculation of the shortest distance from the point to the surface to optimize the contour error evaluation objective function of the complex surface;Finally,the differential particle method,differential evolution method,and particle swarm method are respectively combined with the segmentation surface approximation algorithm to calculate the contour error of the complex surface.The experimental results show that this method is greatly improved comparing with the single use of differential evolution method and particle swarm method.The accuracy of the profile error is verified,and the method is verified through examples.
分 类 号:TH161[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.237.153