面向无监督分割的双分支上采样域自适应网络  

Double branch upsampling domain adaptive network for unsupervised segmentation

在线阅读下载全文

作  者:韩宗桓 刘名果 李珅 陈立家[1] 田敏 兰天翔 梁倩 Han Zonghuan;Liu Mingguo;Li Shen;Chen Lijia;Tian Min;Lan Tianxiang;Liang Qian(School of Physics&Electronics,Henan University,Kaifeng Henan 475004,China;Kaifeng Pingmei New Carbon Materials Technology Co.Ltd.,Kaifeng Henan 475002,China)

机构地区:[1]河南大学物理与电子学院,河南开封475004 [2]开封平煤新型炭材料科技有限公司,河南开封475002

出  处:《计算机应用研究》2022年第9期2861-2866,共6页Application Research of Computers

基  金:国家自然科学基金资助项目(61901158);河南省科技厅资助项目(202102210121,212102210500);开封市重大科技专项资助项目(20ZD014,2001016)。

摘  要:工业应用中,表面压印字符图像全监督语义分割将会给企业带来高昂的数据集标注成本,针对该问题,提出了双支路特征融合的域适应分割方法(dual-branch feature fusion domain adaptation,DbFFDA)。借鉴U-Net的跨层连接设计思路,提出了双分支上采样结构的残差域适应分割网络(residual adaptation network,Res-Adp);同时提出了融合特征输入用于提升网络分割性能,克服了字符缺失的问题;此外,提出了分割连续性损失函数L_(Con),抑制了分割图像中噪点的产生。在石墨电极表面压印字符无监督分割实验中,所提方法MIoU值可达69.60%,实际分割效果已基本满足字符识别需求,有望在特定工业场景中投入实际应用,为企业节省数据集标注成本。In industrial applications,fully supervised semantic segmentation of surface-imprinted character images will bring high dataset annotation costs to enterprises.To solve this problem,this paper proposed a dual-branch feature fusion domain adaptation(DbFFDA)method.Firstly,this method drew on the design idea of U-Net’s cross-layer connection,and proposed a residual adaptation network(Res-Adp)with a dual-branch upsampling structure.At the same time,this method proposed the fusion feature input to improve network segmentation performance and overcome the problem of missing characters.Furthermore,this method proposed a segmentation continuity loss function L_(Con),which suppressed the generation of noise in segmented images.In the unsupervised segmentation experiment of imprinted characters on the surface of graphite electrodes,the MIoU value of the proposed method can reach 69.60%.The actual segmentation effect has basically met the needs of character recognition,and it is expected to be put into practical applications in specific industrial scenarios,saving enterprises dataset labeling costs.

关 键 词:表面压印字符 域适应 语义分割 无监督训练 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象