检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yang Jiang Jie An Fei Liang Guoyu Zuo Jia Yi Chuan Ning Hong Zhang Kai Dong Zhong Lin Wang
机构地区:[1]Beijing Institute of Nanoenergy and Nanosystems,Chinese Academy of Sciences,Beijing 101400,China [2]School of Nanoscience and Technology,University of Chinese Academy of Sciences,Beijing 100049,China [3]Institute of Textiles and Clothing,The Hong Kong Polytechnic University Hung Hom,Kowloon,Hong Kong 999077,China [4]Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China [5]School of Materials Science and Engineering,Georgia Institute of Technology,Atlanta,GA 30332-0245,USA
出 处:《Nano Research》2022年第9期8389-8397,共9页纳米研究(英文版)
基 金:the National Key R&D Program of China(No.2021YFA1201601);the National Natural Science Foundation of China(No.22109012);Natural Science Foundation of Beijing(No.2212052);the Fundamental Research Funds for the Central Universities(No.E1E46805).
摘 要:With increasing work pressure in modern society,prolonged sedentary positions with poor sitting postures can cause physical and psychological problems,including obesity,muscular disorders,and myopia.In this paper,we present a self-powered sitting position monitoring vest(SPMV)based on triboelectric nanogenerators(TENGs)to achieve accurate real-time posture recognition through an integrated machine learning algorithm.The SPMV achieves high sensitivity(0.16 mV/Pa),favorable stretchability(10%),good stability(12,000 cycles),and machine washability(10 h)by employing knitted double threads interlaced with conductive fiber and nylon yarn.Utilizing a knitted structure and sensor arrays that are stitched into different parts of the clothing,the SPMV offers a non-invasive method of recognizing different sitting postures,providing feedback,and warning users while enhancing long-term wearing comfortability.It achieves a posture recognition accuracy of 96.6%using the random forest classifier,which is higher than the logistic regression(95.5%)and decision tree(94.3%)classifiers.The TENG-based SPMV offers a reliable solution in the healthcare system for non-invasive and long-term monitoring,promoting the development of triboelectric-based wearable electronics.
关 键 词:posture monitoring knitted fabric triboelectric nanogenerator wearable electronics machine learning
分 类 号:TS106[轻工技术与工程—纺织工程] TP181[轻工技术与工程—纺织科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170