Machine Learning-Based Channel State Estimators for 5G Wireless Communication Systems  

在线阅读下载全文

作  者:Mohamed Hassan Essai Ali Fahad Alraddady Mo’ath Y.Al-Thunaibat Shaima Elnazer 

机构地区:[1]Department of Electrical Engineering,Faculty of Engineering,Al-Azhar University,Qena,83513,Egypt [2]Department of Computer Engineering,College of Computers and Information Technology,Taif University,Taif,21944,Saudi Arabia [3]Department of Management Information Systems,Taif University,Taif,21944,Saudi Arabia

出  处:《Computer Modeling in Engineering & Sciences》2023年第4期755-778,共24页工程与科学中的计算机建模(英文)

基  金:funded by Taif University Researchers Supporting Project No.(TURSP-2020/214),Taif University,Taif,Saudi Arabia。

摘  要:For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge.

关 键 词:DLNNs channel state estimator 5G and beyond communication systems robust loss functions 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象