FedCDR:Privacy-preserving federated cross-domain recommendation  被引量:2

在线阅读下载全文

作  者:Dengcheng Yan Yuchuan Zhao Zhongxiu Yang Ying Jin Yiwen Zhang 

机构地区:[1]School of Computer Science and Technology,Anhui University,Hefei,China [2]Weifang Key Laboratory of Blockchain on Agricultural Vegetables,Weifang University of Science and Technology,Weifang,China [3]Department of Management,Hefei University,Hefei,China

出  处:《Digital Communications and Networks》2022年第4期552-560,共9页数字通信与网络(英文版)

基  金:supported by the Key Project of Nature Science Research for the Universities of Anhui Province of China(No.KJ2020A0657);the National Science Foundation of China(No.61872002);the Key Research and Development Program of Anhui Province(No.202104a05020058).

摘  要:Cross-Domain Recommendation(CDR)aims to solve data sparsity and cold-start problems by utilizing a relatively information-rich source domain to improve the recommendation performance of the data-sparse target domain.However,most existing approaches rely on the assumption of centralized storage of user data,which undoubtedly poses a significant risk of user privacy leakage because user data are highly privacy-sensitive.To this end,we propose a privacy-preserving Federated framework for Cross-Domain Recommendation,called FedCDR.In our method,to avoid leakage of user privacy,a general recommendation model is trained on each user's personal device to obtain embeddings of users and items,and each client uploads weights to the central server.The central server then aggregates the weights and distributes them to each client for updating.Furthermore,because the weights implicitly contain private information about the user,local differential privacy is adopted for the gradients before uploading them to the server for better protection of user privacy.To distill the relationship of user embedding between two domains,an embedding transformation mechanism is used on the server side to learn the cross-domain embedding transformation model.Extensive experiments on real-world datasets demonstrate that ourmethod achieves performance comparable with that of existing data-centralized methods and effectively protects user privacy.

关 键 词:Cross-domain recommendation Federated learning Privacy preserving 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象