基于MEEMD-Prony联合算法的电力系统低频振荡模态辨识  被引量:7

Low Frequency Oscillation Mode Identification of PowerSystem Based on MEEMD-Prony Joint Algorithm

在线阅读下载全文

作  者:雷志勇 江灏[2] 李中胜[3] LEI Zhiyong;JIANG Hao;LI Zhongsheng(Department of Electrical Power Engineering,Fujian College of Water Conservancy and Electric Power,Yong’an Fujian 366000;College of Electrical Engineering and Automation,Fuzhou University,Fuzhou Fujian 350108)

机构地区:[1]福建水利电力职业技术学院电力工程学院,福建永安366000 [2]福州大学电气工程与自动化学院,福建福州350108 [3]福建水利电力职业技术学院,福建永安366000

出  处:《东北电力大学学报》2022年第4期50-55,共6页Journal of Northeast Electric Power University

基  金:国家自然科学基金青年科学基金(61703106);福建水利电力职业技术学院2022年度院级基金一般项目B级《基于改进去噪的Prony算法电网低频振荡模态辨识研究》(YJKJ2204B)。

摘  要:长距离、重负荷输电线路经常因为低频振荡问题引发运行事故.针对噪声干扰导致的低频振荡信号模态辨识困难问题,提出一种基于MEEMD-Prony联合算法的辨识方案.利用MEEMD算法对非线性和非平稳随机信号滤波后得到主导振荡模式的模态函数,并利用Prony算法对信号进行拟合和识别.为验证本方案的效果,分别利用Prony算法、EMD-Prony和本算法对加入的低频振荡噪声信号进行了实验验证,实验结果表明,文中提出的基于MEEMD-Prony联合算法方案明显优于传统算法,可用于实际的低频振荡信号模态识别.Long-distance and heavy-load power lines often emerge operation accidents due to the low frequency oscillations.Aiming at the difficulty in mode identification of low-frequency oscillatory signals caused by noise interference,an identification scheme based on the MEEMD-Prony joint algorithm is proposed.The mode function of the dominant oscillation mode is obtained after filtering the nonlinear and non-stationary random signals by the MEEMD algorithm,and the signal is fitted and identified by the Prony algorithm.In order to verify the effect of this scheme,the Prony algorithm,EMD-Prony and this algorithm are used to verify the added low-frequency oscillation noise signal respectively.The experimental results show that the proposed scheme based on the MEEMD-Prony joint algorithm is obviously better than the traditional algorithm,and it can be used for actual low frequency oscillation signal mode identification.

关 键 词:低频振荡 模态辨识 PRONY算法 MEEMD 

分 类 号:TM712[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象