基于拓扑思想对海伦喷泉实验原理的分析  

A SIMPLE TOPOLOGICAL ANALYSIS ON HOW HERON’S FOUNTAIN WORKS

在线阅读下载全文

作  者:侯世林[1] 李颖[1] 师玉荣[1] HOU Shilin;LI Ying;SHI Yurong(College of Physics and Optoelectronic Engineering,Ocean University of China,Qingdao,Shandong 266100)

机构地区:[1]中国海洋大学物理与光电工程学院,山东青岛266100

出  处:《物理与工程》2022年第3期110-114,共5页Physics and Engineering

基  金:中国高等教育学会理科教育研究项目(21LKYB03);中国海洋大学本科生教学研究(2021JY009)与教师发展基金(2019JXJJ01)项目。

摘  要:海伦喷泉是一种既简单又有趣的实验装置,可用作大中学生综合素质训练的教学素材。与普通喷泉不同,海伦喷泉喷射高度可高于初始液面高度,因此其工作原理常常困惑一些中学生和大学生。本文基于拓扑分析,可以发现海伦喷泉原理上可等效于其内液柱之间密封一段气体的U形管;其喷水高度在准静态条件下等于密封气柱的高度。实际喷射高度受初始条件或操作过程等主要因素的影响,也可以在该模型下得到简洁解释。相关拓扑分析思想也可应用于其他实验的设计与探究。Heron’s fountain is simple and interesting experimental device, which can be used as a teaching material for comprehensive quality training of college and middle school students. Different from ordinary fountains, the water jet of a Heron’s fountain can be higher than the initial water level, which often puzzles some middle school students and college students. In this paper, based upon a simple topological analysis, it is found that Heron’s fountain can be equivalent to a U-tube with water separated by a certain amount of gas in principle, which can give a concise explanation on how it works. The height of the water jet is equal to the height of the gas in the tube under ideal condition. The actual injection height is affected by the main factors such as initial conditions or operation process, and can also be explained concisely under the model. The application of topological ideas can also be applied to the design and exploration of other experiments.

关 键 词:拓扑思想 海伦喷泉 U形管模型 

分 类 号:O4-4[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象