检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东建筑大学信息与电气工程学院,山东省济南市250000
出 处:《电子技术与软件工程》2022年第16期253-258,共6页ELECTRONIC TECHNOLOGY & SOFTWARE ENGINEERING
基 金:山东省重大科技创新工程(No.2019JZZY010120);山东省重点研发计划(No.2019GSF111054)。
摘 要:本文基于深度学习框架及自然语言处理,将政企类文本智能分类过程中的文本预处理、模型构建、分类效果比较等环节进行了实现与分析。自然语言处理是文本分类的有效手段,在所有的文本分类语境中,政企类文本因其文本较长、类别较多、文本质量不一等特点,在文本分类中取得的效果一般。而随着政务服务水平的提高以及对信息化、智能化的要求逐渐提高,政企类文本智能分类的实现变得更加重要。在实验过程中,本文采用了DNN、CNN、LSTM、BERT等模型进行实验处理,经过比较以及模型优化,最终取得了较优的结果,并分析了其在实际工程项目中的具体应用场景。
关 键 词:深度学习 文本预处理 BERT 文本分类 预训练模型
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7