检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李松峰 宋震 侯珏 肇北 王江涛[4] 刘书浩[1,2] 宋晓敏 LI Song-feng;SONG Zhen;HOU Jue;ZHAO Bei;WANG Jiang-tao;LIU Shu-hao;SONG Xiao-min(China Academy of Transportation Sciences,Beijing 100029,China;Research and Development Center of Transport Industry of Technologies&Equipments of Urban Rail Operation Safety Management,Beijing 100029,China;Beijing Jingdong Shuzhi Industrial Technology Co.,Ltd.,Beijing 100176,China;Beijing MTR Co.,Ltd.,Beijing 100068,China)
机构地区:[1]交通运输部科学研究院,北京100029 [2]城市轨道交通运营安全管理技术及装备交通运输行业研发中心,北京100029 [3]京东数智工业科技有限公司,北京100176 [4]北京京港地铁有限公司,北京100068
出 处:《交通运输研究》2022年第4期65-73,共9页Transport Research
基 金:中央级公益性科研院所基本科研业务费项目(20214812)。
摘 要:故障诊断时间在目前地铁设备故障修复总时长中占比较高,如何有效缩短故障诊断时间成为提高地铁设备故障维修效率的关键。鉴于此,为快速分析地铁设备系统中的薄弱环节,以故障诊断时间为判定标准,提出基于贝叶斯网络的地铁设备故障诊断算法,将贝叶斯网络计算的故障概率与该种故障排查时间相结合作为预期故障诊断时间指标,并以该指标值从低到高依序进行故障排查诊断。然后基于调研获取的全国17家地铁公司列车客室门故障数据,利用蒙特卡洛仿真和3D数字孪生对比人工排查和本算法在故障诊断方面的效率差异。算例结果显示,利用本算法定位故障点时所消耗的时间是人工排查时长的43%~48%,表明基于故障诊断时间的贝叶斯网络地铁设备故障诊断算法能快速分析出系统中的薄弱环节,提高地铁设备故障的维修效率。The time of fault diagnosis accounts for a large proportion in the process of fault repair of subway equipment at present. How to shorten the time of fault diagnosis effectively becomes the key point to improve the efficiency of fault repair of subway equipment. Given this, in order to quickly analyze the weak links in subway system, taking the fault diagnosis time as the judgment standard, a fault diagnosis algorithm of subway equipment based on Bayesian network was proposed. The fault probability calculated by the Bayesian network was combined with the troubleshooting time of the fault as the expected fault diagnosis time index, and the fault diagnosis was performed based on the fault diagnosis time index value from low to high. Based on the fault data of passenger doors of 17 metro companies in China, the efficiency difference between manual troubleshooting and this algorithm in fault diagnosis was compared by using Monte Carlo simulation and 3D digital twinning. The results show that the time consumed by the Bayesian network model fault diagnosis algorithm in locating the fault point is43%~48% of time consumed by the manual troubleshooting. It indicates that the Bayesian network fault diagnosis algorithm based on fault diagnosis time can quickly analyze the weak links in the subway system and improve the maintenance efficiency.
关 键 词:地铁设备 故障树 贝叶斯网络 故障诊断 机器算法
分 类 号:U231[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3